Designing Reliable Experiments with Generative Agent-Based Modeling: A Comprehensive Guide Using Concordia by Google DeepMind
- URL: http://arxiv.org/abs/2411.07038v1
- Date: Mon, 11 Nov 2024 14:45:08 GMT
- Title: Designing Reliable Experiments with Generative Agent-Based Modeling: A Comprehensive Guide Using Concordia by Google DeepMind
- Authors: Alejandro Leonardo García Navarro, Nataliia Koneva, Alfonso Sánchez-Macián, José Alberto Hernández, Manuel Goyanes,
- Abstract summary: Generative Agent-Based Modeling (GABM) offers a solution by enabling scholars to create simulations where AI-driven agents can generate complex behaviors.
This paper introduces a framework for designing reliable experiments using GABM, making sophisticated simulation techniques more accessible to researchers across various fields.
- Score: 39.96801170116895
- License:
- Abstract: In social sciences, researchers often face challenges when conducting large-scale experiments, particularly due to the simulations' complexity and the lack of technical expertise required to develop such frameworks. Agent-Based Modeling (ABM) is a computational approach that simulates agents' actions and interactions to evaluate how their behaviors influence the outcomes. However, the traditional implementation of ABM can be demanding and complex. Generative Agent-Based Modeling (GABM) offers a solution by enabling scholars to create simulations where AI-driven agents can generate complex behaviors based on underlying rules and interactions. This paper introduces a framework for designing reliable experiments using GABM, making sophisticated simulation techniques more accessible to researchers across various fields. We provide a step-by-step guide for selecting appropriate tools, designing the model, establishing experimentation protocols, and validating results.
Related papers
- On the limits of agency in agent-based models [13.130587222524305]
Agent-based modeling offers powerful insights into complex systems, but its practical utility has been limited by computational constraints.
Recent advancements in large language models (LLMs) could enhance ABMs with adaptive agents, but their integration into large-scale simulations remains challenging.
We present LLM archetypes, a technique that balances behavioral complexity with computational efficiency, allowing for nuanced agent behavior in large-scale simulations.
arXiv Detail & Related papers (2024-09-14T04:17:24Z) - MLR-Copilot: Autonomous Machine Learning Research based on Large Language Models Agents [10.86017322488788]
We present a new systematic framework, autonomous Machine Learning Research with large language models (MLR-Copilot)
It is designed to enhance machine learning research productivity through the automatic generation and implementation of research ideas using Large Language Model (LLM) agents.
We evaluate our framework on five machine learning research tasks and the experimental results show the framework's potential to facilitate the research progress and innovations.
arXiv Detail & Related papers (2024-08-26T05:55:48Z) - Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission [74.10928850232717]
This paper develops generative artificial intelligence (AI) agents for model formulation and then applies a mixture of experts (MoE) to design transmission strategies.
Specifically, we leverage large language models (LLMs) to build an interactive modeling paradigm.
We propose an MoE-proximal policy optimization (PPO) approach to solve the formulated problem.
arXiv Detail & Related papers (2024-04-14T03:44:54Z) - Large Language Models Need Consultants for Reasoning: Becoming an Expert in a Complex Human System Through Behavior Simulation [5.730580726163518]
Large language models (LLMs) have demonstrated remarkable capabilities comparable to humans in fields such as mathematics, law, coding, common sense, and world knowledge.
We propose a novel reasoning framework, termed Mosaic Expert Observation Wall'' (MEOW) exploiting generative-agents-based simulation technique.
arXiv Detail & Related papers (2024-03-27T03:33:32Z) - Computational Experiments Meet Large Language Model Based Agents: A
Survey and Perspective [16.08517740276261]
Computational experiments have emerged as a valuable method for studying complex systems.
accurately representing real social systems in Agent-based Modeling (ABM) is challenging due to the diverse and intricate characteristics of humans.
The integration of Large Language Models (LLMs) has been proposed, enabling agents to possess anthropomorphic abilities.
arXiv Detail & Related papers (2024-02-01T01:17:46Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z) - Designing Optimal Behavioral Experiments Using Machine Learning [8.759299724881219]
We provide a tutorial on leveraging recent advances in BOED and machine learning to find optimal experiments for any kind of model.
We consider theories of how people balance exploration and exploitation in multi-armed bandit decision-making tasks.
As compared to experimental designs commonly used in the literature, we show that our optimal designs more efficiently determine which of a set of models best account for individual human behavior.
arXiv Detail & Related papers (2023-05-12T18:24:30Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
We propose BOSMOS: an approach to experimental design that can select between computational models without tractable likelihoods.
In simulated experiments, we demonstrate that the proposed BOSMOS technique can accurately select models in up to 2 orders of magnitude less time than existing LFI alternatives.
arXiv Detail & Related papers (2023-03-03T21:41:01Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Quantitatively Assessing the Benefits of Model-driven Development in
Agent-based Modeling and Simulation [80.49040344355431]
This paper compares the use of MDD and ABMS platforms in terms of effort and developer mistakes.
The obtained results show that MDD4ABMS requires less effort to develop simulations with similar (sometimes better) design quality than NetLogo.
arXiv Detail & Related papers (2020-06-15T23:29:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.