MLR-Copilot: Autonomous Machine Learning Research based on Large Language Models Agents
- URL: http://arxiv.org/abs/2408.14033v2
- Date: Mon, 2 Sep 2024 05:55:06 GMT
- Title: MLR-Copilot: Autonomous Machine Learning Research based on Large Language Models Agents
- Authors: Ruochen Li, Teerth Patel, Qingyun Wang, Xinya Du,
- Abstract summary: We present a new systematic framework, autonomous Machine Learning Research with large language models (MLR-Copilot)
It is designed to enhance machine learning research productivity through the automatic generation and implementation of research ideas using Large Language Model (LLM) agents.
We evaluate our framework on five machine learning research tasks and the experimental results show the framework's potential to facilitate the research progress and innovations.
- Score: 10.86017322488788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning research, crucial for technological advancements and innovation, often faces significant challenges due to its inherent complexity, slow pace of experimentation, and the necessity for specialized expertise. Motivated by this, we present a new systematic framework, autonomous Machine Learning Research with large language models (MLR-Copilot), designed to enhance machine learning research productivity through the automatic generation and implementation of research ideas using Large Language Model (LLM) agents. The framework consists of three phases: research idea generation, experiment implementation, and implementation execution. First, existing research papers are used to generate hypotheses and experimental plans vis IdeaAgent powered by LLMs. Next, the implementation generation phase translates these plans into executables with ExperimentAgent. This phase leverages retrieved prototype code and optionally retrieves candidate models and data. Finally, the execution phase, also managed by ExperimentAgent, involves running experiments with mechanisms for human feedback and iterative debugging to enhance the likelihood of achieving executable research outcomes. We evaluate our framework on five machine learning research tasks and the experimental results show the framework's potential to facilitate the research progress and innovations.
Related papers
- Technical Report: Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1-like reasoning approach is challenging, and researchers have been making various attempts to advance this open area of research.
We present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms.
arXiv Detail & Related papers (2024-11-18T16:15:17Z) - Designing Reliable Experiments with Generative Agent-Based Modeling: A Comprehensive Guide Using Concordia by Google DeepMind [39.96801170116895]
Generative Agent-Based Modeling (GABM) offers a solution by enabling scholars to create simulations where AI-driven agents can generate complex behaviors.
This paper introduces a framework for designing reliable experiments using GABM, making sophisticated simulation techniques more accessible to researchers across various fields.
arXiv Detail & Related papers (2024-11-11T14:45:08Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
An exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions.
Recent developments in large language models(LLMs) suggest a promising avenue for automating the generation of novel research ideas.
We propose a Chain-of-Ideas(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain.
arXiv Detail & Related papers (2024-10-17T03:26:37Z) - Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers [90.26363107905344]
Large language models (LLMs) have sparked optimism about their potential to accelerate scientific discovery.
No evaluations have shown that LLM systems can take the very first step of producing novel, expert-level ideas.
arXiv Detail & Related papers (2024-09-06T08:25:03Z) - Towards Fully Autonomous Research Powered by LLMs: Case Study on Simulations [5.03859766090879]
This study explores the feasibility of constructing an autonomous simulation agent powered by Large Language Models.
Using a simulation problem of polymer chain conformations as a case study, we assessed the performance of ASAs powered by different LLMs.
Our findings revealed that ASA-GPT-4o achieved near-flawless execution on designated research missions.
arXiv Detail & Related papers (2024-08-28T03:48:05Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Automatic benchmarking of large multimodal models via iterative experiment programming [71.78089106671581]
We present APEx, the first framework for automatic benchmarking of LMMs.
Given a research question expressed in natural language, APEx leverages a large language model (LLM) and a library of pre-specified tools to generate a set of experiments for the model at hand.
The report drives the testing procedure: based on the current status of the investigation, APEx chooses which experiments to perform and whether the results are sufficient to draw conclusions.
arXiv Detail & Related papers (2024-06-18T06:43:46Z) - System for systematic literature review using multiple AI agents:
Concept and an empirical evaluation [5.194208843843004]
We introduce a novel multi-AI agent model designed to fully automate the process of conducting Systematic Literature Reviews.
The model operates through a user-friendly interface where researchers input their topic.
It generates a search string used to retrieve relevant academic papers.
The model then autonomously summarizes the abstracts of these papers.
arXiv Detail & Related papers (2024-03-13T10:27:52Z) - MLXP: A Framework for Conducting Replicable Experiments in Python [63.37350735954699]
We propose MLXP, an open-source, simple, and lightweight experiment management tool based on Python.
It streamlines the experimental process with minimal overhead while ensuring a high level of practitioner overhead.
arXiv Detail & Related papers (2024-02-21T14:22:20Z) - Emergent autonomous scientific research capabilities of large language
models [0.0]
Transformer-based large language models are rapidly advancing in the field of machine learning research.
We present an Intelligent Agent system that combines multiple large language models for autonomous design, planning, and execution of scientific experiments.
arXiv Detail & Related papers (2023-04-11T16:50:17Z) - Less is More: A Call to Focus on Simpler Models in Genetic Programming
for Interpretable Machine Learning [1.0323063834827415]
Interpretability can be critical for the safe and responsible use of machine learning models in high-stakes applications.
We argue that research in GP for IML needs to focus on searching in the space of low-complexity models.
arXiv Detail & Related papers (2022-04-05T08:28:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.