To Train or Not to Train: Balancing Efficiency and Training Cost in Deep Reinforcement Learning for Mobile Edge Computing
- URL: http://arxiv.org/abs/2411.07086v1
- Date: Mon, 11 Nov 2024 16:02:12 GMT
- Title: To Train or Not to Train: Balancing Efficiency and Training Cost in Deep Reinforcement Learning for Mobile Edge Computing
- Authors: Maddalena Boscaro, Federico Mason, Federico Chiariotti, Andrea Zanella,
- Abstract summary: We present a new algorithm to dynamically select when to train a Deep Reinforcement Learning (DRL) agent that allocates resources.
Our method is highly general, as it can be directly applied to any scenario involving a training overhead.
- Score: 15.079887992932692
- License:
- Abstract: Artificial Intelligence (AI) is a key component of 6G networks, as it enables communication and computing services to adapt to end users' requirements and demand patterns. The management of Mobile Edge Computing (MEC) is a meaningful example of AI application: computational resources available at the network edge need to be carefully allocated to users, whose jobs may have different priorities and latency requirements. The research community has developed several AI algorithms to perform this resource allocation, but it has neglected a key aspect: learning is itself a computationally demanding task, and considering free training results in idealized conditions and performance in simulations. In this work, we consider a more realistic case in which the cost of learning is specifically accounted for, presenting a new algorithm to dynamically select when to train a Deep Reinforcement Learning (DRL) agent that allocates resources. Our method is highly general, as it can be directly applied to any scenario involving a training overhead, and it can approach the same performance as an ideal learning agent even under realistic training conditions.
Related papers
- Reinforcement Learning for Adaptive Resource Scheduling in Complex System Environments [8.315191578007857]
This study presents a novel computer system performance optimization and adaptive workload management scheduling algorithm based on Q-learning.
By contrast, Q-learning, a reinforcement learning algorithm, continuously learns from system state changes, enabling dynamic scheduling and resource optimization.
This research provides a foundation for the integration of AI-driven adaptive scheduling in future large-scale systems, offering a scalable, intelligent solution to enhance system performance, reduce operating costs, and support sustainable energy consumption.
arXiv Detail & Related papers (2024-11-08T05:58:09Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Fast Context Adaptation in Cost-Aware Continual Learning [10.515324071327903]
5G and Beyond networks require more complex learning agents and the learning process itself might end up competing with users for communication and computational resources.
This creates friction: on the one hand, the learning process needs resources to quickly convergence to an effective strategy; on the other hand, the learning process needs to be efficient, i.e. take as few resources as possible from the user's data plane, so as not to throttle users' resources.
In this paper, we propose a dynamic strategy to balance the resources assigned to the data plane and those reserved for learning.
arXiv Detail & Related papers (2023-06-06T17:46:48Z) - The Cost of Learning: Efficiency vs. Efficacy of Learning-Based RRM for
6G [10.28841351455586]
Deep Reinforcement Learning (DRL) has become a valuable solution to automatically learn efficient resource management strategies in complex networks.
In many scenarios, the learning task is performed in the Cloud, while experience samples are generated directly by edge nodes or users.
This creates a friction between the need to speed up convergence towards an effective strategy, which requires the allocation of resources to transmit learning samples.
We propose a dynamic balancing strategy between the learning and data planes, which allows the centralized learning agent to quickly converge to an efficient resource allocation strategy.
arXiv Detail & Related papers (2022-11-30T11:26:01Z) - Smart Scheduling based on Deep Reinforcement Learning for Cellular
Networks [18.04856086228028]
We propose a smart scheduling scheme based on deep reinforcement learning (DRL)
We provide implementation-friend designs, i.e., a scalable neural network design for the agent and a virtual environment training framework.
We show that the DRL-based smart scheduling outperforms the conventional scheduling method and can be adopted in practical systems.
arXiv Detail & Related papers (2021-03-22T02:09:16Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Adaptive Serverless Learning [114.36410688552579]
We propose a novel adaptive decentralized training approach, which can compute the learning rate from data dynamically.
Our theoretical results reveal that the proposed algorithm can achieve linear speedup with respect to the number of workers.
To reduce the communication-efficient overhead, we further propose a communication-efficient adaptive decentralized training approach.
arXiv Detail & Related papers (2020-08-24T13:23:02Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
We show that our method, advantage weighted actor critic (AWAC), enables rapid learning of skills with a combination of prior demonstration data and online experience.
Our results show that incorporating prior data can reduce the time required to learn a range of robotic skills to practical time-scales.
arXiv Detail & Related papers (2020-06-16T17:54:41Z) - Incentive Mechanism Design for Resource Sharing in Collaborative Edge
Learning [106.51930957941433]
In 5G and Beyond networks, Artificial Intelligence applications are expected to be increasingly ubiquitous.
This necessitates a paradigm shift from the current cloud-centric model training approach to the Edge Computing based collaborative learning scheme known as edge learning.
arXiv Detail & Related papers (2020-05-31T12:45:06Z) - Multi-agent Reinforcement Learning for Resource Allocation in IoT
networks with Edge Computing [16.129649374251088]
It's challenging for end users to offload computation due to their massive requirements on spectrum and resources.
In this paper, we investigate offloading mechanism with resource allocation in IoT edge computing networks by formulating it as a game.
arXiv Detail & Related papers (2020-04-05T20:59:20Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.