論文の概要: A Primer on Word Embeddings: AI Techniques for Text Analysis in Social Work
- arxiv url: http://arxiv.org/abs/2411.07156v1
- Date: Mon, 11 Nov 2024 17:33:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:10:10.120668
- Title: A Primer on Word Embeddings: AI Techniques for Text Analysis in Social Work
- Title(参考訳): 単語埋め込みのプライマー: ソーシャルワークにおけるテキスト分析のためのAI技術
- Authors: Brian E. Perron, Kelley A. Rivenburgh, Bryan G. Victor, Zia Qi, Hui Luan,
- Abstract要約: 本稿では,ソーシャルワーク研究者に単語埋め込みを紹介する。
基本概念、技術的基礎、実践的応用について議論する。
ソーシャルワークに埋め込み技術をうまく実装するには、ドメイン固有モデルの開発、アクセス可能なツールの作成、ソーシャルワークの倫理的原則に沿ったベストプラクティスの確立が必要であると結論付けている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Word embeddings represent a transformative technology for analyzing text data in social work research, offering sophisticated tools for understanding case notes, policy documents, research literature, and other text-based materials. This methodological paper introduces word embeddings to social work researchers, explaining how these mathematical representations capture meaning and relationships in text data more effectively than traditional keyword-based approaches. We discuss fundamental concepts, technical foundations, and practical applications, including semantic search, clustering, and retrieval augmented generation. The paper demonstrates how embeddings can enhance research workflows through concrete examples from social work practice, such as analyzing case notes for housing instability patterns and comparing social work licensing examinations across languages. While highlighting the potential of embeddings for advancing social work research, we acknowledge limitations including information loss, training data constraints, and potential biases. We conclude that successfully implementing embedding technologies in social work requires developing domain-specific models, creating accessible tools, and establishing best practices aligned with social work's ethical principles. This integration can enhance our ability to analyze complex patterns in text data while supporting more effective services and interventions.
- Abstract(参考訳): 単語の埋め込みは、社会労働研究におけるテキストデータを分析し、ケースノート、政策文書、研究文献、その他のテキストベースの資料を理解するための洗練されたツールを提供する革新的技術である。
本稿では,ソーシャルワーク研究者に単語埋め込みを導入し,これらの数学的表現が従来のキーワードベースアプローチよりもテキストデータの意味や関係を効果的に捉える方法を説明する。
本稿では,セマンティック検索,クラスタリング,検索拡張生成などの基本概念,技術基盤,実践的応用について論じる。
本論文は, 住宅の不安定性パターンのケースノートの分析や, 言語間でのソーシャルワークのライセンス試験の比較など, ソーシャルワーク実践の具体例を通じて, 組込みが研究ワークフローをいかに向上させるかを示す。
ソーシャルワーク研究を進めるための埋め込みの可能性を強調しながら、情報損失、データ制約のトレーニング、潜在的なバイアスなどの制限を認めます。
ソーシャルワークに埋め込み技術をうまく実装するには、ドメイン固有モデルの開発、アクセス可能なツールの作成、ソーシャルワークの倫理的原則に沿ったベストプラクティスの確立が必要であると結論付けている。
この統合により、より効果的なサービスや介入をサポートしながら、テキストデータの複雑なパターンを分析する能力が向上します。
関連論文リスト
- DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour [6.716560115378451]
我々は,人間行動分析のための計算駆動型データ探索を効率化するために,モジュール型でフレキシブルでユーザフレンドリなソフトウェアフレームワークを導入する。
我々の主な目的は、高度な計算方法論へのアクセスを民主化することであり、これにより研究者は、広範囲の技術的熟練を必要とせずに、詳細な行動分析を行うことができる。
論文 参考訳(メタデータ) (2024-07-18T11:28:52Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - A Survey of Text Representation Methods and Their Genealogy [0.0]
近年、高度にスケーラブルな人工神経ネットワークベースのテキスト表現法が出現し、自然言語処理の分野は前例のない成長と高度化が見られた。
我々は、系譜にそれらを配置し、テキスト表現方法の分類を概念化し、最先端の状態を検証し、説明することによって、現在のアプローチに関する調査を行う。
論文 参考訳(メタデータ) (2022-11-26T15:22:01Z) - Simulating Social Acceptability With Agent-based Modeling [28.727916976371265]
私たちは、ソーシャルなプラクティスの動的なバンドルとして、ソーシャルスペースを再編成することを提案します。
我々は、新しいパターンの規則性だけでなく、プラクティス間の特定の相互作用に焦点を当てた研究の方向性について概説する。
論文 参考訳(メタデータ) (2021-05-14T09:31:43Z) - Text Mining for Processing Interview Data in Computational Social
Science [0.6820436130599382]
我々は、市販のテキスト分析技術を用いて、計算社会科学研究からのインタビューテキストデータを処理する。
局所的クラスタリングと用語的エンリッチメントが,応答の探索と定量化に有用であることがわかった。
我々は社会科学の研究にテキスト分析を使うことを奨励し、特に探索的オープンエンドな研究に力を入れている。
論文 参考訳(メタデータ) (2020-11-28T00:44:35Z) - Value Cards: An Educational Toolkit for Teaching Social Impacts of
Machine Learning through Deliberation [32.74513588794863]
Value Card(バリューカード)は、様々な機械学習モデルの社会的影響を、学生や実践者に検討を通じて知らせる教育ツールキットである。
その結果,バリューカードツールキットを用いることで,パフォーマンス指標の技術的定義とトレードオフの両方に対する学生の理解が向上することが示唆された。
論文 参考訳(メタデータ) (2020-10-22T03:27:19Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - Explaining Relationships Between Scientific Documents [55.23390424044378]
本稿では,2つの学術文書間の関係を自然言語テキストを用いて記述する課題に対処する。
本稿では154K文書から622Kサンプルのデータセットを作成する。
論文 参考訳(メタデータ) (2020-02-02T03:54:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。