論文の概要: RoundTable: Investigating Group Decision-Making Mechanism in Multi-Agent Collaboration
- arxiv url: http://arxiv.org/abs/2411.07161v2
- Date: Tue, 03 Jun 2025 22:35:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 16:24:48.761735
- Title: RoundTable: Investigating Group Decision-Making Mechanism in Multi-Agent Collaboration
- Title(参考訳): RoundTable:マルチエージェントコラボレーションにおけるグループ意思決定メカニズムの調査
- Authors: Young-Min Cho, Raphael Shu, Nilaksh Das, Tamer Alkhouli, Yi-An Lai, Jason Cai, Monica Sunkara, Yi Zhang, Dan Roth,
- Abstract要約: 複数ラウンドのコラボレーションにおいて、異なる投票ルールが意思決定の質と効率にどのように影響するかを分析する。
極端に言えば、全会一致投票は、最高のパフォーマンスの方法よりも87%低い初期パフォーマンスを与える。
本研究は,MASコラボレーションの最適化においてグループ意思決定が重要な役割を担っていることを明らかにする。
- 参考スコア(独自算出の注目度): 49.4875652673051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective group decision-making is critical in Multi-Agent Systems (MAS). Yet, how different mechanisms for reaching consensus impact collaboration quality and efficiency remains understudied. We conduct a systematic study on group decision-making mechanisms in a decentralized setting. Through controlled experiments, we analyze how different voting rules affect decision quality and efficiency in a multi-round collaboration. Results reveal that majority voting often cause inefficient collaboration due to its strict acceptance criteria. At the extreme, unanimous voting gives 87% lower initial performance than the best-performing method. Our qualitative analysis of cross-agent communication shows that messages become longer and more repetitive over time: while message length increases by 84%, similarity to the previous round increases to 90%. Based on these insights, language-based early stopping methods make the performance 13% closer to oracle while reducing rounds by 50%. Our findings highlight the crucial role of group decision-making in optimizing MAS collaboration.
- Abstract(参考訳): マルチエージェントシステム(MAS)では、効果的なグループ意思決定が重要である。
しかし、コンセンサスに到達するための異なるメカニズムがコラボレーションの品質と効率にどのように影響するかはまだ検討されていない。
分散環境でグループ意思決定の仕組みを体系的に研究する。
制御された実験を通して、複数ラウンドのコラボレーションにおいて、異なる投票規則が意思決定の質と効率にどのように影響するかを分析する。
その結果、過半数の投票は、厳格な承認基準のために、しばしば非効率なコラボレーションを引き起こすことが明らかになった。
極端に言えば、全会一致投票は、最高のパフォーマンスの方法よりも87%低い初期パフォーマンスを与える。
メッセージ長が84%向上する一方、前回のラウンドと類似性は90%向上する。
これらの知見に基づいて、言語ベースの早期停止手法は、ラウンドを50%削減しながら、パフォーマンスをオラクルに13%近づける。
本研究は,MASコラボレーションの最適化においてグループ意思決定が重要な役割を担っていることを明らかにする。
関連論文リスト
- MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
大規模言語モデル(LLM)は、自律的なエージェントとして顕著な能力を示している。
既存のベンチマークでは、単一エージェントタスクにフォーカスするか、狭いドメインに限定されており、マルチエージェントのコーディネーションと競合のダイナミクスを捉えていない。
多様な対話シナリオにまたがってLLMベースのマルチエージェントシステムを評価するためのベンチマークであるMultiAgentBenchを紹介する。
論文 参考訳(メタデータ) (2025-03-03T05:18:50Z) - Hierarchical Reinforcement Learning for Optimal Agent Grouping in Cooperative Systems [0.4759142872591625]
本稿では,協調型マルチエージェントシステムにおけるエージェントグループ化やペアリングの問題に対処するための階層型強化学習(RL)手法を提案する。
階層的なRLフレームワークを用いることで、グループ化の高レベル決定と低レベルのエージェントのアクションを区別する。
エージェント間の均質性や協調性を扱うために、置換型ニューラルネットワークを導入し、効果的な協調を可能にする。
論文 参考訳(メタデータ) (2025-01-11T14:22:10Z) - Tacit Learning with Adaptive Information Selection for Cooperative Multi-Agent Reinforcement Learning [13.918498667158119]
本稿では,情報選択と暗黙学習に基づく新しい協調型MARLフレームワークを提案する。
我々はゲーティングと選択機構を統合し、エージェントが環境変化に基づいて情報を適応的にフィルタリングできるようにする。
人気のあるMARLベンチマークの実験により、我々のフレームワークは最先端のアルゴリズムとシームレスに統合できることが示された。
論文 参考訳(メタデータ) (2024-12-20T07:55:59Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - AgentsCoMerge: Large Language Model Empowered Collaborative Decision Making for Ramp Merging [46.69777653051523]
ランプの合流は交通システムのボトルネックの1つであり、交通渋滞、事故、深刻な二酸化炭素排出を引き起こすのが普通である。
我々は,大規模言語モデル(LLM)を活用するための新しい協調的意思決定フレームワーク,AgentsCoMergeを提案する。
論文 参考訳(メタデータ) (2024-08-07T08:34:48Z) - Improving Multi-Agent Debate with Sparse Communication Topology [9.041025703879905]
マルチエージェントの議論は、推論や事実性タスクのための大規模言語モデルの品質向上に有効であることが証明されている。
本稿では,マルチエージェントシステムにおける通信接続の効果について検討する。
GPTモデルとMistralモデルを用いた実験により,疎通信トポロジを利用したマルチエージェントの議論が同等あるいは優れた性能を達成できることが判明した。
論文 参考訳(メタデータ) (2024-06-17T17:33:09Z) - ChoiceMates: Supporting Unfamiliar Online Decision-Making with
Multi-Agent Conversational Interactions [58.71970923420007]
提案するChoiceMatesは,LLMエージェントの動的セットとの対話を可能にするシステムである。
エージェントは、意見のあるペルソナとして、柔軟に会話に参加し、応答を提供するだけでなく、各エージェントの好みを引き出すために互いに会話する。
ChoiceMatesを従来のWeb検索とシングルエージェントと比較した結果,ChoiceMatesはより信頼性の高いWebと比較して,発見,潜水,情報管理に有用であることが判明した。
論文 参考訳(メタデータ) (2023-10-02T16:49:39Z) - Research on Multi-Agent Communication and Collaborative Decision-Making
Based on Deep Reinforcement Learning [0.0]
本論文は,マルチエージェント・プロキシ・ポリシー最適化アルゴリズムに基づくマルチエージェントの協調的意思決定について考察する。
異なるエージェントは、エージェント間の情報交換を通じて局所的な観測によって引き起こされる非定常性を緩和することができる。
実験結果から,マルチエージェント環境の非定常性を改善する効果が得られた。
論文 参考訳(メタデータ) (2023-05-23T14:20:14Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Feature and Instance Joint Selection: A Reinforcement Learning
Perspective [47.704739699011995]
共同選択作業を実現するための強化学習ソリューションを提案する。
特に、シーケンシャルスキャン機構はエージェントのアクション戦略として設計されている。
実世界のデータセットの実験では、パフォーマンスが改善された。
論文 参考訳(メタデータ) (2022-05-12T07:51:32Z) - Iterated Reasoning with Mutual Information in Cooperative and Byzantine
Decentralized Teaming [0.0]
我々は,政策グラディエント(PG)の下での最適化において,エージェントの方針がチームメイトの方針に準じることが,本質的に相互情報(MI)の下限を最大化することを示す。
我々の手法であるInfoPGは、創発的協調行動の学習におけるベースラインを上回り、分散協調型MARLタスクにおける最先端の課題を設定します。
論文 参考訳(メタデータ) (2022-01-20T22:54:32Z) - Promoting Resilience in Multi-Agent Reinforcement Learning via
Confusion-Based Communication [5.367993194110255]
効果的に協力するグループの能力とグループのレジリエンスとの関係を強調した。
レジリエンスを促進するために,新しい混乱型通信プロトコルによる協調の促進を提案する。
各種のMARL設定において,提案手法の実証評価を行った。
論文 参考訳(メタデータ) (2021-11-12T09:03:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。