論文の概要: UTMath: Math Evaluation with Unit Test via Reasoning-to-Coding Thoughts
- arxiv url: http://arxiv.org/abs/2411.07240v1
- Date: Mon, 11 Nov 2024 18:59:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:12:12.697203
- Title: UTMath: Math Evaluation with Unit Test via Reasoning-to-Coding Thoughts
- Title(参考訳): UTMath:Reasoning-to-Coding Thoughtsによる単体テストによる数学評価
- Authors: Bo Yang, Qingping Yang, Runtao Liu,
- Abstract要約: 本稿では,広範囲な単体テストを通じてモデルをしっかりと評価する UTMath Benchmark を紹介する。
9つの数学領域にまたがる1,053の問題で構成され、1つの問題に対して68以上のテストケースがある。
我々は、LLMがコードを生成する前に明示的な推論を実行することを奨励するReasoning-to-Coding of Thoughts(RCoT)アプローチを導入する。
- 参考スコア(独自算出の注目度): 8.582930981424528
- License:
- Abstract: The evaluation of mathematical reasoning capabilities is essential for advancing Artificial General Intelligence (AGI). While Large Language Models (LLMs) have shown impressive performance in solving mathematical problems, existing benchmarks such as GSM8K and MATH present limitations, including narrow problem definitions with specific numbers and reliance on predetermined rules that hinder accurate assessments of reasoning and adaptability. This paper introduces the UTMath Benchmark, which robustly evaluates the models through extensive unit tests. It consists of 1,053 problems across 9 mathematical domains, with over 68 test cases per problem.We propose an innovative evaluation framework inspired by unit testing in software development, focusing on both accuracy and reliability of results. Furthermore, we introduce the Reasoning-to-Coding of Thoughts (RCoT) approach, which encourages LLMs to perform explicit reasoning before generating code, leading to generating more advanced solution and improved performance. Furthermore, we are releasing not only the UTMath benchmark but also the UTMath-Train training dataset (more than 70k samples), to support the community in further exploring mathematical reasoning.
- Abstract(参考訳): 数学的推論能力の評価は、人工知能(AGI)の発展に不可欠である。
LLM(Large Language Models)は数学的な問題を解決するのに優れた性能を示してきたが、GSM8KやMATHといった既存のベンチマークでは、特定の数を持つ狭い問題定義や、推論と適応性の正確な評価を妨げる所定の規則に依存するといった制限が提示されている。
本稿では,広範囲な単体テストを通じてモデルをしっかりと評価する UTMath Benchmark を紹介する。
9つの数学領域にまたがる1,053の問題と68以上のテストケースから構成され、我々は、ソフトウェア開発における単体テストに触発された革新的な評価フレームワークを提案し、精度と結果の信頼性の両方に焦点をあてる。
さらに,LLMがコードを生成する前に明確な推論を行うことを奨励するReasoning-to-Coding of Thoughts (RCoT) アプローチを導入することで,より高度なソリューションが生成され,性能が向上する。
さらに、UTMathベンチマークだけでなく、UTMath-Trainトレーニングデータセット(70万以上のサンプル)もリリースして、数学的推論をさらに探求するコミュニティを支援しています。
関連論文リスト
- MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs [61.74749961334557]
MathHayは、LLMの長文数学的推論能力を評価するために設計された自動ベンチマークである。
我々は,8つのトップパフォーマンスモデルの長文数学的推論能力を評価するために,MathHayの広範な実験を行った。
論文 参考訳(メタデータ) (2024-10-07T02:30:07Z) - BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search [22.672130194493793]
大規模言語モデル(LLM)は、幅広いタスクやドメインで例外的なパフォーマンスを示している。
彼らは数学の厳密で論理的な性質のため、数学の問題を解くのに依然として困難に直面している。
本稿では,数学的問題解決能力を高めるための新しい手法BEATSを提案する。
論文 参考訳(メタデータ) (2024-09-26T15:47:42Z) - Is Your Model Really A Good Math Reasoner? Evaluating Mathematical Reasoning with Checklist [46.670206614087334]
モデルが本当に問題を理解しているなら、さまざまなタスクにまたがって堅牢に適用されるべきである、と私たちは主張する。
MathCheckはタスクの一般化と推論をテストするためのよく設計されたチェックリストである。
MathCheckは真の数学的能力をよく反映し、数学的知性をより線形に表現する。
論文 参考訳(メタデータ) (2024-07-11T17:58:58Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBenchは、大規模言語モデルの数学的能力を厳格に評価する新しいベンチマークである。
MathBenchは幅広い数学の分野にまたがっており、理論的な理解と実践的な問題解決のスキルの両方を詳細に評価している。
論文 参考訳(メタデータ) (2024-05-20T17:52:29Z) - Mathify: Evaluating Large Language Models on Mathematical Problem Solving Tasks [34.09857430966818]
我々は,11番目と12番目の標準数学 NCERT 教科書から得られた数学データセット "MathQuest" を紹介する。
LLaMA-2, WizardMath, MAmmoTHの3つの大きな言語モデルを用いた微調整実験を行った。
この3つのモデルのうち,MAmmoTH-13Bが最も熟練したモデルとして登場し,提示された数理問題の解法において,最高レベルの能力を達成した。
論文 参考訳(メタデータ) (2024-04-19T08:45:42Z) - Evaluating Mathematical Reasoning Beyond Accuracy [50.09931172314218]
推論ステップの品質を評価するための新しい方法論であるReasonEvalを紹介します。
我々は、ReasonEvalが人間のラベル付きデータセット上で最先端のパフォーマンスを達成することを示す。
我々は、ReasonEvalがデータ選択において重要な役割を果たすことを観察する。
論文 参考訳(メタデータ) (2024-04-08T17:18:04Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
大規模言語モデル (LLM) は、様々な数学的推論ベンチマークで顕著な性能を達成している。
1つの必須かつ頻繁な証拠は、数学の質問がわずかに変更されたとき、LLMは誤って振る舞うことができることである。
このことは, LLMの数学推論能力の頑健性を評価するために, 幅広い質問のバリエーションを試すことによるものである。
論文 参考訳(メタデータ) (2024-02-29T15:26:14Z) - CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities [25.857946070979576]
概念とHint-Annotated Math Problems (CHAMP) は、概念に注釈を付けた高校数学の競争問題である。
このベンチマークは困難で、最高のモデルは標準設定で58.1%しか得点できない。
モデルはしばしば、間違った推論ステップを通じて、正しい最終回答に到達します。
論文 参考訳(メタデータ) (2024-01-13T03:18:16Z) - VerityMath: Advancing Mathematical Reasoning by Self-Verification Through Unit Consistency [33.760209585322606]
プログラムベースの解法を用いて,数学語問題に対する強力なオープンソースLLMの性能について検討する。
本稿では,各量の単位を定義し,数理演算時の単位の整合性を確保することによる体系的アプローチを提案する。
単体一貫性を取り入れた我々のアプローチは、現在、そうでないアプローチに比べてわずかに性能が劣っている。
論文 参考訳(メタデータ) (2023-11-13T09:06:58Z) - Lila: A Unified Benchmark for Mathematical Reasoning [59.97570380432861]
LILAは、23の多様なタスクと4次元からなる統一的な数学的推論ベンチマークである。
我々は,Pythonプログラムの形式でタスク命令とソリューションを収集することにより,20のデータセットベンチマークを拡張してベンチマークを構築した。
LILAで訓練された汎用数学的推論モデルであるBHASKARAを紹介する。
論文 参考訳(メタデータ) (2022-10-31T17:41:26Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
本稿では,中国初の数学的事前学習言語モデル(PLM)を提示することにより,機械の数学的知性向上を目指す。
他の標準のNLPタスクとは異なり、数学的テキストは問題文に数学的用語、記号、公式を含むため理解が難しい。
基礎課程と上級課程の両方からなる数学PLMの学習を改善するための新しいカリキュラム事前学習手法を設計する。
論文 参考訳(メタデータ) (2022-06-13T17:03:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。