論文の概要: A Tutorial on Teaching Data Analytics with Generative AI
- arxiv url: http://arxiv.org/abs/2411.07244v1
- Date: Fri, 25 Oct 2024 05:27:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-17 09:02:17.664921
- Title: A Tutorial on Teaching Data Analytics with Generative AI
- Title(参考訳): ジェネレーティブAIを用いたデータ分析の指導
- Authors: Robert L. Bray,
- Abstract要約: このチュートリアルは、大規模言語モデル(LLM)をデータ分析クラスに組み込むという課題に対処する。
それは、AIによって実現されたいくつかの新しいクラス内およびクラス外教育技術について詳述している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This tutorial addresses the challenge of incorporating large language models (LLMs), such as ChatGPT, in a data analytics class. It details several new in-class and out-of-class teaching techniques enabled by AI. For example, instructors can parallelize instruction by having students interact with different custom-made GPTs to learn different parts of an analysis and then teach each other what they learned from their AIs. For another example, instructors can turn problem sets into AI tutoring sessions, whereby a custom-made GPT guides a student through the problems, and the student uploads the chatlog for their homework submission. For a third example, you can assign different labs to each section of your class and have each section create AI assistants to help the other sections work through their labs. This tutorial advocates the programming in the English paradigm, in which students express the desired data transformations in prose and then use AI to generate the corresponding code. Students can wrangle data more effectively by programming in English than by manipulating in Excel. However, some students will program in English better than others, so you will still derive a robust grade distribution (at least with current LLMs).
- Abstract(参考訳): このチュートリアルは、ChatGPTのような大規模言語モデル(LLM)をデータ分析クラスに組み込むという課題に対処する。
それは、AIによって実現されたいくつかの新しいクラス内およびクラス外教育技術について詳述している。
例えば、インストラクターは、生徒がさまざまなカスタムメイドのGPTと対話して分析の異なる部分を学習させ、AIから学んだことを相互に教えることで、指導を並列化することができる。
別の例では、インストラクターは問題セットをAI教育セッションに変換することができ、カスタムメイドのGPTが問題を通して生徒をガイドし、学生は宿題の提出のためにチャットログをアップロードする。
第3の例では、クラスの各セクションに異なるラボを割り当てて、各セクションにAIアシスタントを作成して、他のセクションが自分のラボで作業できるようにします。
このチュートリアルは英語パラダイムのプログラミングを提唱し、学生は散文で所望のデータ変換を表現し、AIを使って対応するコードを生成する。
学生はExcelで操作するよりも、英語でプログラミングすることでデータをより効果的にひらめくことができる。
しかし、一部の学生は英語のプログラムが他の生徒より優れているので、いまだに(少なくとも現在のLLMでは)頑健なグレードの分布を導出します。
関連論文リスト
- Integrating AI Tutors in a Programming Course [0.0]
RAGManはLLMベースのチューターシステムで、様々なコース特化および宿題特化AIチューターをサポートする。
本稿では,AI教師とのインタラクション,学生のフィードバック,および比較グレード分析について述べる。
論文 参考訳(メタデータ) (2024-07-14T00:42:39Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
本稿では,教師が指導するプログレッシブ・ラーニング・フレームワークであるYodaを紹介する。
モデルファインチューニングの有効性を向上させるために,教師の教育過程をエミュレートする。
実験の結果, YODAのデータによるLLaMA2のトレーニングにより, SFTは大幅に向上した。
論文 参考訳(メタデータ) (2024-01-28T14:32:15Z) - How to Build an AI Tutor that Can Adapt to Any Course and Provide Accurate Answers Using Large Language Model and Retrieval-Augmented Generation [0.0]
OpenAI Assistants APIにより、AI Tutorは、ファイルやチャット履歴を簡単に埋め込み、保存、検索、管理できる。
AI Tutorのプロトタイプは、ソースの引用で関連性があり正確な回答を生成する能力を示している。
論文 参考訳(メタデータ) (2023-11-29T15:02:46Z) - Large Language Model-Driven Classroom Flipping: Empowering
Student-Centric Peer Questioning with Flipped Interaction [3.1473798197405953]
本稿では,大規模言語モデルにおけるフリップ相互作用に基づく教室のフリップの教育的アプローチについて検討する。
欠落した相互作用は、プロンプトに対する回答ではなく、言語モデルを使用して質問を生成することである。
本稿では,クイズ・クイズ・ルーチンとクイズ・プイズ・クイズ・ルーチンとを用いて,クイズ・クイズ・クイズ・クイズとアクイズ・クイズ・クイズ・インシデント・エンジニアリングを統合するワークフローを提案する。
論文 参考訳(メタデータ) (2023-11-14T15:48:19Z) - Learning from Teaching Assistants to Program with Subgoals: Exploring
the Potential for AI Teaching Assistants [18.14390906820148]
本研究では,プログラミング教育における生成AIをTAとして活用する実践性について,初心者の学習者によるTAとのインタラクションをサブゴナル学習環境において検証することによって検討する。
我々の研究は、AI TAで同等のスコアで、学習者がより高速にタスクを解くことができることを示している。
チャットログ分析の結果から,プログラミング教育において生成AIをTAとして設計し,活用するためのガイドラインを提案する。
論文 参考訳(メタデータ) (2023-09-19T08:30:58Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
本稿では,タスク指向のプロンプトを開発し,大規模言語モデル(LLM)を自動的に活用して学習パイプラインを自動化することを提案する。
本稿では,多様なAIモデルのブリッジとしてGPTを用いたAutoML-GPTを提案する。
このアプローチはコンピュータビジョン、自然言語処理、その他の課題領域において顕著な結果をもたらす。
論文 参考訳(メタデータ) (2023-05-04T02:09:43Z) - HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging
Face [85.25054021362232]
大規模言語モデル(LLM)は、言語理解、生成、相互作用、推論において例外的な能力を示した。
LLMは、複雑なAIタスクを解決するために既存のAIモデルを管理するコントローラとして機能する可能性がある。
本稿では,機械学習コミュニティのさまざまなAIモデルを接続するLLMエージェントであるHuggingGPTを紹介する。
論文 参考訳(メタデータ) (2023-03-30T17:48:28Z) - Smart tutor to provide feedback in programming courses [0.0]
学生のプログラミングに関する質問に答えるAIベースのインテリジェントチューターを提案する。
このツールは、全コースでURJCの大学生によってテストされている。
論文 参考訳(メタデータ) (2023-01-24T11:00:06Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
MineRL BASALTコンペティションは、この重要な種類の技術の研究を促進することを目的としている。
Minecraftでは、ハードコードされた報酬関数を書くのが難しいと期待する4つのタスクのスイートを設計しています。
これら4つのタスクのそれぞれについて、人間のデモのデータセットを提供するとともに、模擬学習ベースラインを提供する。
論文 参考訳(メタデータ) (2021-07-05T12:18:17Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
本稿では、最近急増している説明可能なAI(XAI)のテクニックをアクティブラーニング環境に導入することにより、説明可能なアクティブラーニング(XAL)の新たなパラダイムを提案する。
本研究は,機械教育のインタフェースとしてのAI説明の利点として,信頼度校正を支援し,リッチな形式の教示フィードバックを可能にすること,モデル判断と認知作業負荷による潜在的な欠点を克服する効果を示す。
論文 参考訳(メタデータ) (2020-01-24T22:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。