論文の概要: Smart tutor to provide feedback in programming courses
- arxiv url: http://arxiv.org/abs/2301.09918v2
- Date: Thu, 12 Oct 2023 18:46:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 18:15:40.094866
- Title: Smart tutor to provide feedback in programming courses
- Title(参考訳): プログラミングコースでフィードバックを提供するスマートチューター
- Authors: David Rold\'an-\'Alvarez
- Abstract要約: 学生のプログラミングに関する質問に答えるAIベースのインテリジェントチューターを提案する。
このツールは、全コースでURJCの大学生によってテストされている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Artificial Intelligence (AI) is becoming more and more popular as time
passes, allowing to perform tasks that were difficult to do in the past. From
predictions to customization, AI is being used in many areas, not being
educational environments outside this situation. AI is being used in
educational settings to customize contents or to provide personalized feedback
to the students, among others. In this scenario, AI in programming teaching is
something that still has to be explored, since in this area we usually find
assessment tools that allow grading the students work, but we can not find many
tools aimed towards providing feedback to the students in the process of
creating their program. In this work we present an AI based intelligent tutor
that answers students programming questions. The tool has been tested by
university students at the URJC along a whole course. Even if the tool is still
in its preliminary phase, it helped the students with their questions,
providing accurate answers and examples. The students were able to use the
intelligent tutor easily and they thought that it could be a useful tool to use
in other courses.
- Abstract(参考訳): 人工知能(AI)は、時間経過とともにますます人気を増し、過去には困難だったタスクの実行を可能にしている。
予測からカスタマイズに至るまで、AIはこの状況以外の教育環境ではなく、多くの分野で使用されている。
AIは、コンテンツをカスタマイズしたり、生徒にパーソナライズされたフィードバックを提供するために、教育現場で使われている。
このシナリオでは、プログラミング教育におけるaiは、まだ検討する必要のあるものだ。この領域では、通常、学生の仕事を評価するための評価ツールを見つけるが、プログラムの作成プロセスにおいて、学生にフィードバックを提供するためのツールは多くない。
この研究では、学生がプログラミングの質問に答えるAIベースのインテリジェントチューターを提示する。
このツールは、URJCの全コースで大学生によってテストされている。
たとえそのツールがまだ予備段階にあるとしても、学生が質問をし、正確な回答とサンプルを提供した。
学生たちは知的な家庭教師を簡単に使えるようになり、他のコースで使うのに便利なツールだと考えた。
関連論文リスト
- A Multi-Year Grey Literature Review on AI-assisted Test Automation [46.97326049485643]
テスト自動化(TA)技術は、ソフトウェア工学の品質保証に不可欠である。
TAテクニックは、高いテストスイートのメンテナンスコストや広範なプログラミングスキルの必要性といった制限に直面している。
人工知能(AI)は、自動化と改善されたプラクティスを通じて、これらの問題に対処する新たな機会を提供する。
論文 参考訳(メタデータ) (2024-08-12T15:26:36Z) - Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants [175.9723801486487]
我々は,2つのAIアシスタントであるGPT-3.5とGPT-4が適切な回答を得られるかどうかを評価する。
GPT-4は65.8%の質問を正解し、85.1%の質問に対して少なくとも1つの手順で正しい答えを出すことができる。
この結果から,AIの進歩を踏まえて,高等教育におけるプログラムレベルの評価設計の見直しが求められた。
論文 参考訳(メタデータ) (2024-08-07T12:11:49Z) - How Novice Programmers Use and Experience ChatGPT when Solving Programming Exercises in an Introductory Course [0.0]
本研究は,コンピュータ教育研究コミュニティにおいて,導入プログラミングの文脈における生成型AI(GenAI)の理解に寄与する。
本研究は以下の研究課題によって導かれる。
初等プログラミング演習におけるChatGPTの使用パターンについて,学生はどのような報告をしているか?
初等プログラミング演習におけるChatGPTの認識について
論文 参考訳(メタデータ) (2024-07-30T12:55:42Z) - Integrating AI Tutors in a Programming Course [0.0]
RAGManはLLMベースのチューターシステムで、様々なコース特化および宿題特化AIチューターをサポートする。
本稿では,AI教師とのインタラクション,学生のフィードバック,および比較グレード分析について述べる。
論文 参考訳(メタデータ) (2024-07-14T00:42:39Z) - I would love this to be like an assistant, not the teacher: a voice of the customer perspective of what distance learning students want from an Artificial Intelligence Digital Assistant [0.0]
本研究では,仮想AIデジタルアシスタント(AIDA)の設計に関する10人のオンライン・遠隔学習学生の認識について検討した。
参加者全員が、リアルタイムのアシストとクエリの解決、学術的なタスクのサポート、パーソナライゼーションとアクセシビリティのサポート、そして感情的および社会的サポートにAIツールを使用することのメリットを研究し、報告しながら、そのようなAIツールの有用性について同意した。
学生の懸念は、AIDA、データプライバシとデータ利用、運用上の課題、学術的完全性と誤用、教育の将来に関する倫理的・社会的意味に関するものである。
論文 参考訳(メタデータ) (2024-02-16T08:10:41Z) - AI for non-programmers: Applied AI in the lectures for students without programming skills [0.0]
この研究は、応用AIのための実践的な計画スクリプトを提示する。
ドキュメント計画スクリプトは、AIアプリケーションパイプラインに基づいて、AIの概念と研究関連トピックをリンクする。
エネルギー管理の修士課程の講義シリーズは、AIを規律固有の講義にシームレスに統合する方法を示している。
論文 参考訳(メタデータ) (2024-02-06T17:26:24Z) - Giving Feedback on Interactive Student Programs with Meta-Exploration [74.5597783609281]
ウェブサイトやゲームのようなインタラクティブなソフトウェアを開発することは、特にコンピュータ科学を学ぶための魅力的な方法である。
標準的アプローチでは、インストラクターは、学生が実装した対話型プログラムを手動で評価する必要がある。
Code.orgのような何百万ものオンラインプラットフォームは、インタラクティブなプログラムを実装するための代入に関するフィードバックを提供することができない。
論文 参考訳(メタデータ) (2022-11-16T10:00:23Z) - An Experience Report of Executive-Level Artificial Intelligence
Education in the United Arab Emirates [53.04281982845422]
アラブ首長国連邦(UAE)のビジネスエグゼクティブにAIコースを教える経験報告を提示する。
理論的、技術的な側面にのみ焦点をあてるのではなく、学生が既存のビジネスプロセスにAIを組み込む方法を理解するためにAIを教えるコースを開発しました。
論文 参考訳(メタデータ) (2022-02-02T20:59:53Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
MineRL BASALTコンペティションは、この重要な種類の技術の研究を促進することを目的としている。
Minecraftでは、ハードコードされた報酬関数を書くのが難しいと期待する4つのタスクのスイートを設計しています。
これら4つのタスクのそれぞれについて、人間のデモのデータセットを提供するとともに、模擬学習ベースラインを提供する。
論文 参考訳(メタデータ) (2021-07-05T12:18:17Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
与えられたデータセットの任意の目標状態に到達するために学習することによって、環境の機能的な理解を学ぶ目的を提案する。
提案手法は,高次元カメラ画像上で動作し,これまで見つからなかったシーンやオブジェクトに一般化した実ロボットの様々なスキルを学習することができる。
論文 参考訳(メタデータ) (2021-04-15T20:10:11Z) - Teaching Tech to Talk: K-12 Conversational Artificial Intelligence
Literacy Curriculum and Development Tools [9.797319790710711]
我々は,MIT App Inventorの会話エージェントインタフェースとワークショップのカリキュラムをAI能力に関して評価した。
私たちは、学生がAI倫理と学習の概念に最も苦労していることを発見し、教えるときにこれらのトピックを強調することを推奨した。
論文 参考訳(メタデータ) (2020-09-11T20:52:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。