Artificial Intelligence-Informed Handheld Breast Ultrasound for Screening: A Systematic Review of Diagnostic Test Accuracy
- URL: http://arxiv.org/abs/2411.07322v1
- Date: Mon, 11 Nov 2024 19:31:06 GMT
- Title: Artificial Intelligence-Informed Handheld Breast Ultrasound for Screening: A Systematic Review of Diagnostic Test Accuracy
- Authors: Arianna Bunnell, Dustin Valdez, Fredrik Strand, Yannik Glaser, Peter Sadowski, John A. Shepherd,
- Abstract summary: Handheld breast ultrasound (BUS) is a low-cost alternative but requires substantial training.
Artificial intelligence (AI) enabled BUS may aid in both the detection (perception) and classification (interpretation) of breast cancer.
Findings: 5.7 million BUS images from over 185,000 patients were used for AI training or validation.
- Score: 0.3859048418931631
- License:
- Abstract: Background. Breast cancer screening programs using mammography have led to significant mortality reduction in high-income countries. However, many low- and middle-income countries lack resources for mammographic screening. Handheld breast ultrasound (BUS) is a low-cost alternative but requires substantial training. Artificial intelligence (AI) enabled BUS may aid in both the detection (perception) and classification (interpretation) of breast cancer. Materials and Methods. This review (CRD42023493053) is reported in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) and SWiM (Synthesis Without Meta-analysis) guidelines. PubMed and Google Scholar were searched from January 1, 2016 to December 12, 2023. A meta-analysis was not attempted. Studies are grouped according to their AI task type, application time, and AI task. Study quality is assessed using the QUality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Results. Of 763 candidate studies, 314 total full texts were reviewed. 34 studies are included. The AI tasks of included studies are as follows: 1 frame selection, 6 detection, 11 segmentation, and 16 classification. In total, 5.7 million BUS images from over 185,000 patients were used for AI training or validation. A single study included a prospective testing set. 79% of studies were at high or unclear risk of bias. Conclusion. There has been encouraging development of AI for BUS. Despite studies demonstrating high performance across all identified tasks, the evidence supporting AI-enhanced BUS generally lacks robustness. High-quality model validation will be key to realizing the potential for AI-enhanced BUS in increasing access to screening in resource-limited environments.
Related papers
- AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines [1.5332408886895255]
Soft-tissue and bone tumours (STBT) are rare, diagnostically challenging lesions with variable clinical behaviours and treatment approaches.
This systematic review provides an overview of Artificial Intelligence (AI) methods using radiological imaging for diagnosis and prognosis of these tumours.
arXiv Detail & Related papers (2024-08-22T15:31:48Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Artificial intelligence for abnormality detection in high volume neuroimaging: a systematic review and meta-analysis [0.5934394862891423]
Most studies evaluating artificial intelligence (AI) models that detect abnormalities in neuroimaging are tested on unrepresentative patient cohorts.
The aim was to determine the diagnostic test accuracy and summarise the evidence supporting the use of AI models performing first-line, high-volume neuroimaging tasks.
arXiv Detail & Related papers (2024-05-09T10:12:17Z) - A survey of recent methods for addressing AI fairness and bias in
biomedicine [48.46929081146017]
Artificial intelligence systems may perpetuate social inequities or demonstrate biases, such as those based on race or gender.
We surveyed recent publications on different debiasing methods in the fields of biomedical natural language processing (NLP) or computer vision (CV)
We performed a literature search on PubMed, ACM digital library, and IEEE Xplore of relevant articles published between January 2018 and December 2023 using multiple combinations of keywords.
We reviewed other potential methods from the general domain that could be applied to biomedicine to address bias and improve fairness.
arXiv Detail & Related papers (2024-02-13T06:38:46Z) - De-identification of clinical free text using natural language
processing: A systematic review of current approaches [48.343430343213896]
Natural language processing has repeatedly demonstrated its feasibility in automating the de-identification process.
Our study aims to provide systematic evidence on how the de-identification of clinical free text has evolved in the last thirteen years.
arXiv Detail & Related papers (2023-11-28T13:20:41Z) - BMAD: Benchmarks for Medical Anomaly Detection [51.22159321912891]
Anomaly detection (AD) is a fundamental research problem in machine learning and computer vision.
In medical imaging, AD is especially vital for detecting and diagnosing anomalies that may indicate rare diseases or conditions.
We introduce a comprehensive evaluation benchmark for assessing anomaly detection methods on medical images.
arXiv Detail & Related papers (2023-06-20T20:23:46Z) - Artificial intelligence in digital pathology: a diagnostic test accuracy
systematic review and meta-analysis [0.3957768262206625]
This systematic review and meta-analysis included diagnostic accuracy studies using any type of artificial intelligence applied to whole slide images (WSIs) in any disease type.
100 studies were identified for inclusion, equating to over 152,000 whole slide images (WSIs) and representing many disease types.
These studies reported a mean sensitivity of 96.3% (CI 94.1-97.7) and mean specificity of 93.3% (CI 90.5-95.4) for AI.
Overall, AI offers good accuracy when applied to WSIs but requires more rigorous evaluation of its performance.
arXiv Detail & Related papers (2023-06-13T00:45:54Z) - Artificial Intelligence in Ovarian Cancer Histopathology: A Systematic
Review [1.832300121391956]
Methods: A search of PubMed, Scopus, Web of Science, CENTRAL, and WHO-ICTRP was conducted.
Risk of bias was assessed using PROBAST.
There were 80 models of interest, including 37 diagnostic models, 22 prognostic models, and 21 models with other diagnostically relevant outcomes.
All models were found to be at high or unclear risk of bias overall, with most research having a high risk of bias in the analysis.
arXiv Detail & Related papers (2023-03-31T12:26:29Z) - Lung-Originated Tumor Segmentation from Computed Tomography Scan (LOTUS)
Benchmark [48.30502612686276]
Lung cancer is one of the deadliest cancers, and its effective diagnosis and treatment depend on the accurate delineation of the tumor.
Human-centered segmentation, which is currently the most common approach, is subject to inter-observer variability.
The 2018 VIP Cup started with a global engagement from 42 countries to access the competition data.
In a nutshell, all the algorithms proposed during the competition, are based on deep learning models combined with a false positive reduction technique.
arXiv Detail & Related papers (2022-01-03T03:06:38Z) - Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies
on Medical Image Classification [63.44396343014749]
We propose a new margin-based surrogate loss function for the AUC score.
It is more robust than the commonly used.
square loss while enjoying the same advantage in terms of large-scale optimization.
To the best of our knowledge, this is the first work that makes DAM succeed on large-scale medical image datasets.
arXiv Detail & Related papers (2020-12-06T03:41:51Z) - Detection of masses and architectural distortions in digital breast
tomosynthesis: a publicly available dataset of 5,060 patients and a deep
learning model [4.3359550072619255]
We have curated and made publicly available a large-scale dataset of digital breast tomosynthesis images.
It contains 22,032 reconstructed volumes belonging to 5,610 studies from 5,060 patients.
We developed a single-phase deep learning detection model and tested it using our dataset to serve as a baseline for future research.
arXiv Detail & Related papers (2020-11-13T18:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.