A finite-resource description of a measurement process and its implications for the "Wigner's Friend" scenario
- URL: http://arxiv.org/abs/2411.07327v1
- Date: Mon, 11 Nov 2024 19:35:36 GMT
- Title: A finite-resource description of a measurement process and its implications for the "Wigner's Friend" scenario
- Authors: Fernando de Melo, Gabriel Dias Carvalho, Pedro S. Correia, Paola Concha Obando, Thiago R. de Oliveira, Raúl O. Vallejos,
- Abstract summary: We introduce a model of a quantum measurement process that consistently includes the impact of having access only to finite resources.
We show how the collapse can be seen as an effective description of a closed dynamics.
- Score: 36.136619420474766
- License:
- Abstract: Quantum mechanics started out as a theory to describe the smallest scales of energy in Nature. After hundred years of development it is now routinely employed to describe, for example, quantum computers with thousands of qubits. This tremendous progress turns the debate of foundational questions into a technological imperative. In what follows we introduce a model of a quantum measurement process that consistently includes the impact of having access only to finite resources when describing a macroscopic system, like a measurement apparatus. Leveraging modern tools from equilibration of closed systems and typicality, we show how the collapse can be seen as an effective description of a closed dynamics, of which we do not know all its details. Our model is then exploited to address the ``Wigner Friend Scenario'', and we observe that an agreement is reached when both Wigner and his friend acknowledge their finite resources perspective and describe the measurement process accordingly.
Related papers
- Classifying One-Dimensional Quantum States Prepared by a Single Round of Measurements [0.0]
We characterize the patterns of many-body entanglement that can be deterministically created from measurement.
We show this creates matrix product states and identify necessary and sufficient tensor conditions for preparability.
We find a trade-off between the richness of the preparable entanglement spectrum and correlation functions, which leads to a no-go theorem for preparing certain quantum states.
arXiv Detail & Related papers (2024-04-25T17:10:22Z) - Information gain and measurement disturbance for quantum agents [0.0]
We extend the idea of measurement to a more general class of sensors for quantum agents.
For appropriate sensory interactions, the quantum agent may learn'' more about the system than would be possible under any set of classical measurements.
We experimentally demonstrate such a system and characterize the tradeoffs, which can be done by considering the information required to erase the effects of a measurement.
arXiv Detail & Related papers (2024-02-12T21:03:20Z) - A short note about the dynamical description of the measurement process
in quantum physics [0.0]
We consider the measured system part of an open system interacting with the measuring device and show under which ideal conditions the measure process may ideally work.
Our procedure leads to the conclusion that there is no hope that any experimental procedure will be able to lead to a clean solution of the process, except maybe in very specific cases.
arXiv Detail & Related papers (2023-12-20T10:56:35Z) - Making sense of relativistic Wigner friend scenarios: a problem for unitary accounts of quantum measurements ? [0.0]
Wigner-friend scenarios highlight the difficulties inherent to quantum theory when accounting for measurements.
In non-relativistic scenarios, the difficulty is to accommodate unitary evolution for a closed system.
In relativistic scenarios the tensions between quantum theory and relativity induce additional constraints.
arXiv Detail & Related papers (2023-10-06T11:32:03Z) - Quantum measurements and equilibration: the emergence of objective
reality via entropy maximisation [0.0]
We formalise the hypothesis that quantum measurements are driven by the natural tendency of closed systems to maximize entropy.
We lay the groundwork for self-contained models of quantum measurement, proposing improvements to our simple scheme.
arXiv Detail & Related papers (2023-02-22T10:06:17Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.