論文の概要: IdentifyMe: A Challenging Long-Context Mention Resolution Benchmark
- arxiv url: http://arxiv.org/abs/2411.07466v1
- Date: Tue, 12 Nov 2024 01:05:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:19:25.243265
- Title: IdentifyMe: A Challenging Long-Context Mention Resolution Benchmark
- Title(参考訳): IdentifyMe: 長期的調停解決ベンチマーク
- Authors: Kawshik Manikantan, Makarand Tapaswi, Vineet Gandhi, Shubham Toshniwal,
- Abstract要約: IdentifyMeは、Multiple-choice question (MCQ)形式で提示された参照解決のための新しいベンチマークである。
我々は,最先端のサブ10Bオープンモデルとクローズドモデルとの顕著な性能差を観察する。
最も高いスコア付けモデルであるGPT-4oは81.9%の精度を実現し、最先端のLCMの強力な参照能力を強調している。
- 参考スコア(独自算出の注目度): 22.238377215355545
- License:
- Abstract: Recent evaluations of LLMs on coreference resolution have revealed that traditional output formats and evaluation metrics do not fully capture the models' referential understanding. To address this, we introduce IdentifyMe, a new benchmark for mention resolution presented in a multiple-choice question (MCQ) format, commonly used for evaluating LLMs. IdentifyMe features long narratives and employs heuristics to exclude easily identifiable mentions, creating a more challenging task. The benchmark also consists of a curated mixture of different mention types and corresponding entities, allowing for a fine-grained analysis of model performance. We evaluate both closed- and open source LLMs on IdentifyMe and observe a significant performance gap (20-30%) between the state-of-the-art sub-10B open models vs. closed ones. We observe that pronominal mentions, which have limited surface information, are typically much harder for models to resolve than nominal mentions. Additionally, we find that LLMs often confuse entities when their mentions overlap in nested structures. The highest-scoring model, GPT-4o, achieves 81.9% accuracy, highlighting the strong referential capabilities of state-of-the-art LLMs while also indicating room for further improvement.
- Abstract(参考訳): 近年のLLMの評価では、従来の出力形式や評価指標がモデルの参照的理解を完全に捉えていないことが判明している。
そこで本稿では,LLMの評価に一般的に使用されるMCQフォーマットの参照解決のための新しいベンチマークであるIdentifyMeを紹介する。
IdentifyMeは長い物語を特徴とし、容易に識別できる言及を除外するためにヒューリスティックスを採用している。
ベンチマークはまた、異なる参照型と対応するエンティティのキュレートされた混合で構成されており、モデルパフォーマンスのきめ細かい分析を可能にする。
我々は IdentifyMe 上でのオープンソース LLM およびオープンソース LLM の評価を行い,最先端の Sub-10B オープンモデルとクローズドモデルとの有意な性能差 (20-30%) を観測した。
我々は、表面情報に制限があるプロノミナルな言及は、通常、名目上の言及よりもモデルが解決するのがずっと難しいことを観察する。
さらに、LLMはネスト構造に重複するエンティティを混乱させることが多い。
最も高いスコア付けモデルであるGPT-4oは81.9%の精度を達成し、最先端のLCMの強力な参照能力を強調しつつ、さらなる改善の余地を示している。
関連論文リスト
- Towards Automated Fact-Checking of Real-World Claims: Exploring Task Formulation and Assessment with LLMs [32.45604456988931]
本研究では,Large Language Models(LLMs)を用いたAFC(Automated Fact-Checking)のベースライン比較を確立する。
また,2007-2024年にPoitiFactから収集された17,856件のクレームに対して,制限されたWeb検索によって得られた証拠を用いてLlama-3モデルの評価を行った。
以上の結果から, LLMは微調整をせずに, 分類精度, 正当化品質において, より小型のLLMより一貫して優れていたことが示唆された。
論文 参考訳(メタデータ) (2025-02-13T02:51:17Z) - Forget What You Know about LLMs Evaluations - LLMs are Like a Chameleon [11.753349115726952]
大規模言語モデル(LLM)は、しばしば公開ベンチマークで優れているように見えるが、これらの高いスコアはデータセット固有のサーフェスキューへの過度な依存を隠蔽する可能性がある。
本稿では,ベンチマークプロンプトを歪ませるメタ評価フレームワークであるChameleon Benchmark Overfit Detector (C-BOD)を紹介する。
セマンティックコンテンツやラベルを保存しながら入力をリフレッシュすることで、C-BODはモデルのパフォーマンスが記憶パターンによって駆動されるかどうかを明らかにする。
論文 参考訳(メタデータ) (2025-02-11T10:43:36Z) - Ranked from Within: Ranking Large Multimodal Models for Visual Question Answering Without Labels [64.94853276821992]
大規模マルチモーダルモデル(LMM)は、様々なアプリケーションにまたがってますます展開されている。
従来の評価方法は、主にデータセット中心であり、固定されたラベル付きデータセットと教師付きメトリクスに依存している。
ソフトマックス確率などの不確実性信号を利用したLMMの教師なしモデルランキングについて検討する。
論文 参考訳(メタデータ) (2024-12-09T13:05:43Z) - Are LLMs Better than Reported? Detecting Label Errors and Mitigating Their Effect on Model Performance [21.926934384262594]
大きな言語モデル(LLM)は、アノテーションプロセスを強化する新しい機会を提供する。
合意、ラベルの品質、効率の点で、専門家、クラウドソース、LLMベースのアノテーションを比較します。
以上の結果から,ラベルエラーがかなり多く,修正されると,報告されたモデル性能が大幅に上向きに変化することが判明した。
論文 参考訳(メタデータ) (2024-10-24T16:27:03Z) - The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism [39.392450788666814]
大規模言語モデル(LLM)の現在の評価は、しばしば非決定論を見落としている。
greedyデコーディングは一般的に、最も評価されたタスクのサンプリング方法よりも優れています。
より小型のLPMはGPT-4-Turboのような大型のモデルと一致するか、超えることができる。
論文 参考訳(メタデータ) (2024-07-15T06:12:17Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
大規模言語モデル(LLM)を評価するベンチマークであるCLAMBERを紹介する。
分類を基盤として12Kの高品質なデータを構築し, 市販のLCMの強度, 弱点, 潜在的なリスクを評価する。
本研究は, あいまいなユーザクエリの特定と明確化において, 現在のLCMの実用性に限界があることを示唆する。
論文 参考訳(メタデータ) (2024-05-20T14:34:01Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Investigating Data Contamination in Modern Benchmarks for Large Language Models [27.479260572913724]
近年の観測は、膨らませたベンチマークスコアとLLMの実際の性能の相違を裏付けている。
我々は,オープンソースのLLMとプロプライエタリなLLMの両方に適した2つの手法を提案し,データ汚染について検討した。
いくつかの商用LCMは、様々なテストセットに欠けているオプションを驚くほど推測できる。
論文 参考訳(メタデータ) (2023-11-16T11:03:04Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
本稿では,LLMベースのフレームワークであるReEvalについて述べる。
本稿では、ChatGPTを用いてReEvalを実装し、2つの人気のあるオープンドメインQAデータセットのバリエーションを評価する。
我々の生成したデータは人間可読であり、大きな言語モデルで幻覚を引き起こすのに役立ちます。
論文 参考訳(メタデータ) (2023-10-19T06:37:32Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。