論文の概要: Addressing Vulnerabilities in AI-Image Detection: Challenges and Proposed Solutions
- arxiv url: http://arxiv.org/abs/2412.00073v1
- Date: Tue, 26 Nov 2024 06:35:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-08 08:17:58.608531
- Title: Addressing Vulnerabilities in AI-Image Detection: Challenges and Proposed Solutions
- Title(参考訳): AI画像検出における脆弱性への対処--課題と提案された解決策
- Authors: Justin Jiang,
- Abstract要約: 本研究では,AI生成画像の検出における畳み込みニューラルネットワーク(CNN)とDenseNetアーキテクチャの有効性を評価する。
本稿では,ガウスのぼかしやテキスト変更,ローランド適応(LoRA)などの更新や修正が検出精度に与える影響を解析する。
この発見は、現在の検出方法の脆弱性を強調し、AI画像検出システムの堅牢性と信頼性を高めるための戦略を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The rise of advanced AI models like Generative Adversarial Networks (GANs) and diffusion models such as Stable Diffusion has made the creation of highly realistic images accessible, posing risks of misuse in misinformation and manipulation. This study evaluates the effectiveness of convolutional neural networks (CNNs), as well as DenseNet architectures, for detecting AI-generated images. Using variations of the CIFAKE dataset, including images generated by different versions of Stable Diffusion, we analyze the impact of updates and modifications such as Gaussian blurring, prompt text changes, and Low-Rank Adaptation (LoRA) on detection accuracy. The findings highlight vulnerabilities in current detection methods and propose strategies to enhance the robustness and reliability of AI-image detection systems.
- Abstract(参考訳): Generative Adversarial Networks(GANs)のような先進的なAIモデルの台頭と、Stable Diffusionのような拡散モデルによって、非常に現実的なイメージが作成できるようになった。
本研究では、AI生成画像の検出における畳み込みニューラルネットワーク(CNN)とDenseNetアーキテクチャの有効性を評価する。
安定拡散の異なるバージョンで生成された画像を含むCIFAKEデータセットのバリエーションを用いて、ガウスのぼかし、テキスト変更の促し、ローランド適応(LoRA)が検出精度に与える影響を分析する。
この発見は、現在の検出方法の脆弱性を強調し、AI画像検出システムの堅牢性と信頼性を高めるための戦略を提案する。
関連論文リスト
- Detecting Discrepancies Between AI-Generated and Natural Images Using Uncertainty [91.64626435585643]
本稿では,誤用と関連するリスクを軽減するために,予測不確実性を利用してAI生成画像を検出する新しい手法を提案する。
この動機は、自然画像とAI生成画像の分布差に関する基本的な仮定から生じる。
本稿では,AI生成画像の検出スコアとして,大規模事前学習モデルを用いて不確実性を計算することを提案する。
論文 参考訳(メタデータ) (2024-12-08T11:32:25Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
凍結したCLIP埋め込みに基づいて、既存の最先端AIGI検出手法を解析する。
さまざまなAIジェネレータが生成する画像が実際の画像とどのように異なるかを示す。
論文 参考訳(メタデータ) (2024-06-21T10:33:09Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - Diffusion Model Driven Test-Time Image Adaptation for Robust Skin Lesion Classification [24.08402880603475]
テストデータ上でのモデルの精度を高めるためのテスト時間画像適応手法を提案する。
拡散モデルを用いて、対象の試験画像をソース領域に投影して修正する。
私たちの手法は、さまざまな汚職、アーキテクチャ、データレシエーションにおいて、堅牢性をより堅牢にします。
論文 参考訳(メタデータ) (2024-05-18T13:28:51Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference Analysis for No-Reference Image Quality Assessment [78.21609845377644]
本稿では, 複雑な関係をモデル化する能力を示す, 最先端(SOTA)生成モデルを提案する。
生成した拡張画像とノイズを含む画像を利用する新しい拡散復元ネットワークを考案する。
2つの視覚評価枝は、得られた高レベル特徴情報を包括的に解析するように設計されている。
論文 参考訳(メタデータ) (2024-02-22T09:39:46Z) - Exposing the Fake: Effective Diffusion-Generated Images Detection [14.646957596560076]
本稿では拡散生成画像検出(SeDID)のためのステップワイド誤差と呼ばれる新しい検出法を提案する。
SeDIDは拡散モデルのユニークな特性、すなわち決定論的逆転と決定論的逆退誤差を利用する。
我々の研究は拡散モデル生成画像の識別に重要な貢献をしており、人工知能のセキュリティ分野における重要なステップとなっている。
論文 参考訳(メタデータ) (2023-07-12T16:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。