Accident Impact Prediction based on a deep convolutional and recurrent neural network model
- URL: http://arxiv.org/abs/2411.07537v1
- Date: Tue, 12 Nov 2024 04:27:06 GMT
- Title: Accident Impact Prediction based on a deep convolutional and recurrent neural network model
- Authors: Pouyan Sajadi, Mahya Qorbani, Sobhan Moosavi, Erfan Hassannayebi,
- Abstract summary: This study proposes a deep neural network model known as the cascade model to predict post-accident impacts.
It leverages readily available real-world data from Los Angeles County to predict post-accident impacts.
The results reveal a higher precision in predicting minimal impacts and a higher recall in predicting more significant impacts.
- Score: 0.24999074238880484
- License:
- Abstract: Traffic accidents pose a significant threat to public safety, resulting in numerous fatalities, injuries, and a substantial economic burden each year. The development of predictive models capable of real-time forecasting of post-accident impact using readily available data can play a crucial role in preventing adverse outcomes and enhancing overall safety. However, existing accident predictive models encounter two main challenges: first, reliance on either costly or non-real-time data, and second the absence of a comprehensive metric to measure post-accident impact accurately. To address these limitations, this study proposes a deep neural network model known as the cascade model. It leverages readily available real-world data from Los Angeles County to predict post-accident impacts. The model consists of two components: Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN). The LSTM model captures temporal patterns, while the CNN extracts patterns from the sparse accident dataset. Furthermore, an external traffic congestion dataset is incorporated to derive a new feature called the "accident impact" factor, which quantifies the influence of an accident on surrounding traffic flow. Extensive experiments were conducted to demonstrate the effectiveness of the proposed hybrid machine learning method in predicting the post-accident impact compared to state-of-the-art baselines. The results reveal a higher precision in predicting minimal impacts (i.e., cases with no reported accidents) and a higher recall in predicting more significant impacts (i.e., cases with reported accidents).
Related papers
- MSCT: Addressing Time-Varying Confounding with Marginal Structural Causal Transformer for Counterfactual Post-Crash Traffic Prediction [24.3907895281179]
This paper presents a novel deep learning model designed for counterfactual post-crash traffic prediction.
The proposed model is treatment-aware, with a specific focus on comprehending and predicting traffic speed under hypothetical crash intervention strategies.
The model is validated using both synthetic and real-world data, demonstrating that MSCT outperforms state-of-the-art models in multi-step-ahead prediction performance.
arXiv Detail & Related papers (2024-07-19T06:42:41Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Uncertainty-Aware Probabilistic Graph Neural Networks for Road-Level Traffic Accident Prediction [6.570852598591727]
We introduce the Stemporal Zero-Inflated Tweedie Graph Neural Network STZITZTDGNN -- the first uncertainty-aware graph deep learning model in road traffic accident prediction for multisteps.
Our study demonstrates that STIDGNN can effectively inform targeted road monitoring, thereby improving urban road safety strategies.
arXiv Detail & Related papers (2023-09-10T16:35:47Z) - Robust Trajectory Prediction against Adversarial Attacks [84.10405251683713]
Trajectory prediction using deep neural networks (DNNs) is an essential component of autonomous driving systems.
These methods are vulnerable to adversarial attacks, leading to serious consequences such as collisions.
In this work, we identify two key ingredients to defend trajectory prediction models against adversarial attacks.
arXiv Detail & Related papers (2022-07-29T22:35:05Z) - Predicting Seriousness of Injury in a Traffic Accident: A New Imbalanced
Dataset and Benchmark [62.997667081978825]
The paper introduces a new dataset to assess the performance of machine learning algorithms in the prediction of the seriousness of injury in a traffic accident.
The dataset is created by aggregating publicly available datasets from the UK Department for Transport.
arXiv Detail & Related papers (2022-05-20T21:15:26Z) - Causal Knowledge Guided Societal Event Forecasting [24.437437565689393]
We introduce a deep learning framework that integrates causal effect estimation into event forecasting.
Two robust learning modules, including a feature reweighting module and an approximate loss, are introduced to enable prior knowledge injection.
arXiv Detail & Related papers (2021-12-10T17:41:02Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Uncertainty-based Traffic Accident Anticipation with Spatio-Temporal
Relational Learning [30.59728753059457]
Traffic accident anticipation aims to predict accidents from dashcam videos as early as possible.
Current deterministic deep neural networks could be overconfident in false predictions.
We propose an uncertainty-based accident anticipation model with relational-temporal learning.
arXiv Detail & Related papers (2020-08-01T20:21:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.