Uncertainty-Aware Probabilistic Graph Neural Networks for Road-Level Traffic Accident Prediction
- URL: http://arxiv.org/abs/2309.05072v4
- Date: Sat, 27 Jul 2024 10:40:53 GMT
- Title: Uncertainty-Aware Probabilistic Graph Neural Networks for Road-Level Traffic Accident Prediction
- Authors: Xiaowei Gao, Xinke Jiang, Dingyi Zhuang, Huanfa Chen, Shenhao Wang, Stephen Law, James Haworth,
- Abstract summary: We introduce the Stemporal Zero-Inflated Tweedie Graph Neural Network STZITZTDGNN -- the first uncertainty-aware graph deep learning model in road traffic accident prediction for multisteps.
Our study demonstrates that STIDGNN can effectively inform targeted road monitoring, thereby improving urban road safety strategies.
- Score: 6.570852598591727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic accidents present substantial challenges to human safety and socio-economic development in urban areas. Developing a reliable and responsible traffic accident prediction model is crucial to addressing growing public safety concerns and enhancing the safety of urban mobility systems. Traditional methods face limitations at fine spatiotemporal scales due to the sporadic nature of highrisk accidents and the predominance of non-accident characteristics. Furthermore, while most current models show promising occurrence prediction, they overlook the uncertainties arising from the inherent nature of accidents, and then fail to adequately map the hierarchical ranking of accident risk values for more precise insights. To address these issues, we introduce the Spatiotemporal Zero-Inflated Tweedie Graph Neural Network STZITDGNN -- the first uncertainty-aware probabilistic graph deep learning model in roadlevel traffic accident prediction for multisteps. This model integrates the interpretability of the statistical Tweedie family model and the expressive power of graph neural networks. Its decoder innovatively employs a compound Tweedie model,a Poisson distribution to model the frequency of accident occurrences and a Gamma distribution to assess injury severity, supplemented by a zeroinflated component to effectively identify exessive nonincident instances. Empirical tests using realworld traffic data from London, UK, demonstrate that the STZITDGNN surpasses other baseline models across multiple benchmarks and metrics, including accident risk value prediction, uncertainty minimisation, non-accident road identification and accident occurrence accuracy. Our study demonstrates that STZTIDGNN can effectively inform targeted road monitoring, thereby improving urban road safety strategies.
Related papers
- Accident Impact Prediction based on a deep convolutional and recurrent neural network model [0.24999074238880484]
This study proposes a deep neural network model known as the cascade model to predict post-accident impacts.
It leverages readily available real-world data from Los Angeles County to predict post-accident impacts.
The results reveal a higher precision in predicting minimal impacts and a higher recall in predicting more significant impacts.
arXiv Detail & Related papers (2024-11-12T04:27:06Z) - An Explainable Machine Learning Approach to Traffic Accident Fatality Prediction [0.02730969268472861]
Road traffic accidents pose a significant public health threat worldwide.
This study presents a machine learning-based approach for classifying fatal and non-fatal road accident outcomes.
arXiv Detail & Related papers (2024-09-18T12:41:56Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - SST-GCN: The Sequential based Spatio-Temporal Graph Convolutional networks for Minute-level and Road-level Traffic Accident Risk Prediction [1.2815904071470705]
This paper proposes the Sequential based Spatio-Temporal Graph Convolutional Networks (SST-GCN) to predict traffic accidents at the Minute-Level and Road-Level.
Experiments have demonstrated that SST-GCN outperforms other state-of-the-art models in Minute-Level predictions.
arXiv Detail & Related papers (2024-05-28T21:33:18Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
Uncertainty quantification (UQ) methods provide an approach to induce probabilistic reasoning.
We investigate their application to a large-scale image-based traffic dataset spanning multiple cities.
We find that our approach can capture both temporal and spatial effects on traffic behaviour in a representative case study for the city of Moscow.
arXiv Detail & Related papers (2023-08-11T13:35:52Z) - TAP: A Comprehensive Data Repository for Traffic Accident Prediction in
Road Networks [36.975060335456035]
Existing machine learning approaches tend to focus on predicting traffic accidents in isolation.
To incorporate graph structure information, Graph Neural Networks (GNNs) can be naturally applied.
Applying GNNs to the accident prediction problem faces challenges due to the lack of suitable graph-structured traffic accident datasets.
arXiv Detail & Related papers (2023-04-17T22:18:58Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Uncertainty-based Traffic Accident Anticipation with Spatio-Temporal
Relational Learning [30.59728753059457]
Traffic accident anticipation aims to predict accidents from dashcam videos as early as possible.
Current deterministic deep neural networks could be overconfident in false predictions.
We propose an uncertainty-based accident anticipation model with relational-temporal learning.
arXiv Detail & Related papers (2020-08-01T20:21:48Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.