論文の概要: Uncertainty-Aware Test-Time Adaptation for Inverse Consistent Diffeomorphic Lung Image Registration
- arxiv url: http://arxiv.org/abs/2411.07567v1
- Date: Tue, 12 Nov 2024 05:59:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:17:44.401609
- Title: Uncertainty-Aware Test-Time Adaptation for Inverse Consistent Diffeomorphic Lung Image Registration
- Title(参考訳): 逆一貫性拡散型肺画像登録のための不確かさを意識したテスト時間適応
- Authors: Muhammad F. A. Chaudhary, Stephanie M. Aguilera, Arie Nakhmani, Joseph M. Reinhardt, Surya P. Bhatt, Sandeep Bodduluri,
- Abstract要約: 深層学習に基づく微分同相法は、呼吸量と呼吸量の間の大きな変形を捉えるのに苦労する。
逆一貫した拡散型肺登録のための不確実性を考慮したテスト時間適応フレームワークを提案する。
COPDGene研究から675名の被験者を対象に, 呼吸-呼吸CT登録法を訓練し, 評価した。
- 参考スコア(独自算出の注目度): 0.6128607644122429
- License:
- Abstract: Diffeomorphic deformable image registration ensures smooth invertible transformations across inspiratory and expiratory chest CT scans. Yet, in practice, deep learning-based diffeomorphic methods struggle to capture large deformations between inspiratory and expiratory volumes, and therefore lack inverse consistency. Existing methods also fail to account for model uncertainty, which can be useful for improving performance. We propose an uncertainty-aware test-time adaptation framework for inverse consistent diffeomorphic lung registration. Our method uses Monte Carlo (MC) dropout to estimate spatial uncertainty that is used to improve model performance. We train and evaluate our method for inspiratory-to-expiratory CT registration on a large cohort of 675 subjects from the COPDGene study, achieving a higher Dice similarity coefficient (DSC) between the lung boundaries (0.966) compared to both VoxelMorph (0.953) and TransMorph (0.953). Our method demonstrates consistent improvements in the inverse registration direction as well with an overall DSC of 0.966, higher than VoxelMorph (0.958) and TransMorph (0.956). Paired t-tests indicate statistically significant improvements.
- Abstract(参考訳): Diffomorphic deformable Image registrationは、吸気および呼気胸部CTスキャンのスムーズな可逆変換を保証する。
しかし、実際には、深層学習に基づく微分同相法は、吸気量と呼気量の間の大きな変形を捉えるのに苦労しており、したがって逆整合性が欠如している。
既存のメソッドでは、モデルの不確実性も考慮できないため、パフォーマンス向上に役立ちます。
逆一貫した拡散型肺登録のための不確実性を考慮したテスト時間適応フレームワークを提案する。
提案手法はモンテカルロ(MC)ドロップアウトを用いて,モデルの性能向上に使用される空間的不確かさを推定する。
肺の境界 (0.966) とVoxelMorph (0.953) とTransMorph (0.953) とのDice similarity coefficient (DSC) を比較検討した。
本手法は,逆登録方向の整合性向上と,VoxelMorph (0.958),TransMorph (0.956), 0.966の総合DSCの改善を示す。
ペアリングTテストは統計的に有意な改善を示す。
関連論文リスト
- Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - 3D Lymphoma Segmentation on PET/CT Images via Multi-Scale Information Fusion with Cross-Attention [6.499725732124126]
本研究は,びまん性大細胞型B細胞リンパ腫(DLBCL)の正確な分節法を開発することを目的とする。
シフトウインドウ変換器とマルチスケール情報融合(MSIF)モジュールを用いた3次元デュアルブランチエンコーダセグメンテーション法を提案する。
このモデルは5倍のクロスバリデーションを用いて165名のDLBCL患者のデータセットを用いて訓練および検証を行った。
論文 参考訳(メタデータ) (2024-02-04T05:25:12Z) - Diffusion for Natural Image Matting [93.86689168212241]
DiffMatteは、画像マッチングの課題を克服するために設計されたソリューションである。
まず、DiffMatteはデコーダを複雑な結合されたマッティングネットワーク設計から切り離し、拡散プロセスのイテレーションで1つの軽量デコーダだけを含む。
第2に、均一な時間間隔を持つ自己整合トレーニング戦略を採用し、時間領域全体にわたるトレーニングと推論の間に一貫したノイズサンプリングを確保する。
論文 参考訳(メタデータ) (2023-12-10T15:28:56Z) - Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion [56.38386580040991]
Consistency Trajectory Model (CTM) は Consistency Models (CM) の一般化である
CTMは、対戦訓練とスコアマッチング損失を効果的に組み合わせることで、パフォーマンスを向上させる。
CMとは異なり、CTMのスコア関数へのアクセスは、確立された制御可能/条件生成メソッドの採用を合理化することができる。
論文 参考訳(メタデータ) (2023-10-01T05:07:17Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
微調整の深層学習モデルは、分布内(ID)性能と分布外(OOD)堅牢性の間のトレードオフにつながる可能性がある。
そこで本研究では,マスク付き画像を対物サンプルとして用いて,ファインチューニングモデルのロバスト性を向上させる新しいファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-03-06T11:51:28Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - Adaptation to CT Reconstruction Kernels by Enforcing Cross-domain
Feature Maps Consistency [0.06117371161379209]
本研究は,スムーズで訓練し,鋭い再構築カーネル上で試験したモデルにおいて,新型コロナウイルスのセグメンテーション品質の低下を示すものである。
本稿では,F-Consistency(F-Consistency)と呼ばれる,教師なし適応手法を提案する。
論文 参考訳(メタデータ) (2022-03-28T10:00:03Z) - Rapid quantification of COVID-19 pneumonia burden from computed
tomography with convolutional LSTM networks [1.0072268949897432]
新型肺炎における肺病変の迅速定量と分化のための新しい完全自動化ディープラーニングフレームワークを提案する。
SARS-CoV-2の陽性逆転写ポリメラーゼ連鎖反応試験結果を有する197例のCTデータセット上で,この方法の性能を評価した。
論文 参考訳(メタデータ) (2021-03-31T22:09:14Z) - Breast mass detection in digital mammography based on anchor-free
architecture [0.4568777157687961]
BMassDNet(Breast Mass Detection Network)と呼ばれる一段階の物体検出アーキテクチャを提案する。
BMassDNetはアンカーフリーで特徴ピラミッドに基づいており、異なる大きさの乳房の質量を検出する。
提案するBMassDNetは,現在最上位の手法よりも競合検出性能が高いことを示す。
論文 参考訳(メタデータ) (2020-09-02T07:11:16Z) - Multiple resolution residual network for automatic thoracic
organs-at-risk segmentation from CT [2.9023633922848586]
我々は,CT画像からのOAR分割のためのMRRN(Multiple resolution residual Network)の実装と評価を行った。
提案手法は,複数画像解像度で計算された特徴ストリームと残差接続による特徴レベルを同時に組み合わせる。
左肺, 心臓, 食道, 脊髄を分画する検査を35回行った肺がん患者206例の胸部CT検査を用いて, アプローチを訓練した。
論文 参考訳(メタデータ) (2020-05-27T22:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。