論文の概要: Entropy Controllable Direct Preference Optimization
- arxiv url: http://arxiv.org/abs/2411.07595v1
- Date: Tue, 12 Nov 2024 07:09:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:19:27.976870
- Title: Entropy Controllable Direct Preference Optimization
- Title(参考訳): エントロピー制御可能な直接参照最適化
- Authors: Motoki Omura, Yasuhiro Fujita, Toshiki Kataoka,
- Abstract要約: 提案するDPOは,提案するポリシのエントロピーを制御可能なH-DPOである。
実験の結果,H-DPO は様々なタスクにおいて DPO よりも優れており,数理タスクに対するpass@$k$ 評価において優れた結果が得られた。
- 参考スコア(独自算出の注目度): 3.536605202672355
- License:
- Abstract: In the post-training of large language models (LLMs), Reinforcement Learning from Human Feedback (RLHF) is an effective approach to achieve generation aligned with human preferences. Direct Preference Optimization (DPO) allows for policy training with a simple binary cross-entropy loss without a reward model. The objective of DPO is regularized by reverse KL divergence that encourages mode-seeking fitting to the reference policy. Nonetheless, we indicate that minimizing reverse KL divergence could fail to capture a mode of the reference distribution, which may hurt the policy's performance. Based on this observation, we propose a simple modification to DPO, H-DPO, which allows for control over the entropy of the resulting policy, enhancing the distribution's sharpness and thereby enabling mode-seeking fitting more effectively. In our experiments, we show that H-DPO outperformed DPO across various tasks, demonstrating superior results in pass@$k$ evaluations for mathematical tasks. Moreover, H-DPO is simple to implement, requiring only minor modifications to the loss calculation of DPO, which makes it highly practical and promising for wide-ranging applications in the training of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)のポストトレーニングにおいて、人間からのフィードバックからの強化学習(RLHF)は、人間の好みに沿った生成を実現するための効果的なアプローチである。
直接選好最適化(DPO)は、報酬モデルなしで単純なバイナリクロスエントロピー損失でポリシートレーニングを可能にする。
DPOの目的は、基準ポリシーに対するモード探索を奨励する逆KL分岐によって正規化される。
それでも、逆KL分散の最小化は参照分布のモードを捕捉できない可能性があり、これはポリシーの性能を損なう可能性がある。
そこで本研究では,DPO の簡易な修正 H-DPO を提案する。これにより,結果のエントロピーを制御し,分布のシャープさを高め,より効果的にモード探索を行うことができる。
実験の結果,H-DPO は様々なタスクにおいて DPO よりも優れており,数理タスクに対するpass@$k$ 評価において優れた結果が得られた。
さらに、H-DPOは実装が簡単で、DPOの損失計算にわずかな修正しか必要とせず、LLMのトレーニングにおける幅広い応用に非常に実用的で有望である。
関連論文リスト
- Hierarchical Preference Optimization: Learning to achieve goals via feasible subgoals prediction [71.81851971324187]
本研究は階層型強化学習(HRL)の新しいアプローチである階層型優先度最適化(HPO)を導入する。
HPOは、複雑なロボット制御タスクを解く際に、非定常性と非実用的なサブゴール生成の問題に対処する。
挑戦的なロボットナビゲーションと操作タスクの実験はHPOの素晴らしいパフォーマンスを示しており、ベースラインよりも最大35%改善されている。
論文 参考訳(メタデータ) (2024-11-01T04:58:40Z) - Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
我々は、優先不確実性ペナル化スキームを導入し、DPOの悲観的な枠組みを開発する。
ペナル化は、不確実なサンプルの損失勾配を減衰させる損失の補正として機能する。
我々は,バニラDPOと比較して全体的な性能が向上し,高い不確実性選択/拒絶反応によるプロンプトの完成度も向上した。
論文 参考訳(メタデータ) (2024-10-26T14:24:37Z) - Minor DPO reject penalty to increase training robustness [8.971332948872185]
人間の嗜好からの学習は、ダウンストリームタスクにおいて、事前学習されたLLMを人間の嗜好に合わせるために、大規模言語モデル(LLM)の微調整ステップで使用されるパラダイムである。
近年,簡易なRLフリー手法でアライメント問題を解決するために,DPO(Direct Preference Optimization)が提案されている。
本稿では、DPOにおける$beta$の動作メカニズムを分析し、RLアルゴリズムとDPOの構文差を明らかにし、DPOの単純化による潜在的な不足について理解する。
論文 参考訳(メタデータ) (2024-08-19T09:29:31Z) - Direct Alignment of Language Models via Quality-Aware Self-Refinement [31.845241241178982]
そこで本研究では,本研究における本質的知識の活用について検討し,相対的特性の獲得と損失関数の高度化に寄与する。
構築された精細化関数は、軽度の仮定の下で損失関数を自己再定義するのに役立つことを示す。
実験は、DPOやIPOよりも細調整されたモデルの性能を向上させることができることを示している。
論文 参考訳(メタデータ) (2024-05-31T17:31:18Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
拡散モデルは強化学習(Reinforcement Learning, RL)において、その強力な表現力と多モード性に対して広く注目を集めている。
モデルなし拡散に基づくオンラインRLアルゴリズムQ-weighted Variational Policy Optimization (QVPO)を提案する。
具体的には、ある条件下でのオンラインRLにおける政策目標の厳密な下限を証明できるQ重み付き変動損失を導入する。
また,オンラインインタラクションにおける拡散ポリシのばらつきを低減し,サンプル効率を向上させるための効率的な行動ポリシーも開発している。
論文 参考訳(メタデータ) (2024-05-25T10:45:46Z) - D2PO: Discriminator-Guided DPO with Response Evaluation Models [63.71853401569461]
学習を通して嗜好が収集されるオンライン環境において,識別器誘導型DPOであるD2POを提案する。
金の選好を収集する際、これらは政策の訓練だけでなく、銀ラベルによる政策訓練のためのさらに総合的なデータに対する差別的な反応評価モデルを訓練するために利用します。
DPOで政策を訓練し、従来のPPOを上回り、政策モデルから分離した差別者を維持することの恩恵を受けるのが最も効果的である。
論文 参考訳(メタデータ) (2024-05-02T17:44:41Z) - RS-DPO: A Hybrid Rejection Sampling and Direct Preference Optimization Method for Alignment of Large Language Models [7.676477609461592]
人間のフィードバックからの強化学習(RLHF)は、大きな言語モデルとユーザの意図を結びつけるために広く採用されている。
DPOは、ポリシーモデルではなく、人間のアノテーションと代替LDMから生成される対照的な反応に依存している。
本稿では,サンプリングリジェクション(RS)とDPOを体系的に組み合わせることで,両課題に対処する。
提案手法は,資源環境が制限されたLLMを効果的に微調整し,ユーザ意図との整合性を向上する。
論文 参考訳(メタデータ) (2024-02-15T16:00:58Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
提案手法は,リジェクションサンプリングを用いた最適ポリシーからのソース選好データに対する新しいアプローチを提案する。
また、嗜好モデルの観点から、SLiC(Sequence Likelihood)とDPO(Direct Preference Optimization)の両方で使用される損失関数を強化する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-13T01:07:25Z) - Fine-Tuning Language Models with Advantage-Induced Policy Alignment [80.96507425217472]
大規模言語モデルと人間の嗜好を整合させる新しいアルゴリズムを提案する。
言語タスクにおいてPPOを常に上回り、大きなマージンを持つことを示す。
また,損失関数の設計を支援する理論的正当性も提供する。
論文 参考訳(メタデータ) (2023-06-04T01:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。