論文の概要: Simultaneous Reward Distillation and Preference Learning: Get You a Language Model Who Can Do Both
- arxiv url: http://arxiv.org/abs/2410.08458v2
- Date: Fri, 31 Jan 2025 06:27:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 13:59:50.431180
- Title: Simultaneous Reward Distillation and Preference Learning: Get You a Language Model Who Can Do Both
- Title(参考訳): Reward蒸留とPreference Learningの同時学習:両方を実行できる言語モデルを得る
- Authors: Abhijnan Nath, Changsoo Jung, Ethan Seefried, Nikhil Krishnaswamy,
- Abstract要約: 本稿では, DRDO (Direct Reward Distillation and Policy-Optimization) を紹介する。
Ultrafeedback と TL;DR データセットの結果、DRDO が学習したポリシーが、期待される報酬の点で DPO や e-DPO などの手法を超越していることが示されている。
- 参考スコア(独自算出の注目度): 6.102274021710727
- License:
- Abstract: Traditional RLHF-based LLM alignment methods explicitly maximize the expected rewards from a separate reward model. More recent supervised alignment methods like Direct Preference Optimization (DPO) circumvent this phase to avoid problems including model drift and reward overfitting. Although popular due to its simplicity, DPO and similar direct alignment methods which rely heavily on the Bradley-Terry-based pairwise preference formulation can still lead to degenerate policies when challenged by non-deterministic or noisy preference labels, for example human scoring of two candidate outputs with low confidence. This paper introduces DRDO (Direct Reward Distillation and policy-Optimization), which simultaneously models rewards and preferences to avoid such degeneracy. DRDO directly mimics rewards assigned by an oracle while learning human preferences with a novel preference likelihood formulation. Results on the Ultrafeedback and TL;DR datasets demonstrate that DRDO-trained policies surpass methods such as DPO and e-DPO in terms of expected rewards and are more robust, on average, to noisy preference signals as well as out-of-distribution (OOD) settings.
- Abstract(参考訳): 従来のRLHFベースのLLMアライメント手法は、異なる報酬モデルから期待される報酬を明示的に最大化する。
近年のDPO(Direct Preference Optimization)のような教師付きアライメント手法はこのフェーズを回避し、モデルドリフトや報酬オーバーフィッティングなどの問題を回避する。
単純さから人気があるが、ブラッドリー・テリーをベースとしたペアワイズ選好の定式化に大きく依存するDPOや類似の直列法は、例えば2つの候補アウトプットを低信頼で評価するなど、非決定的またはノイズの多い選好ラベルに挑戦しても、政策の退化につながる可能性がある。
本稿では, DRDO (Direct Reward Distillation and Policy-Optimization) について紹介する。
DRDOは、人間の嗜好を新しい嗜好確率の定式化で学習しながら、神託によって割り当てられた報酬を直接模倣する。
Ultrafeedback と TL;DR データセットの結果、DRDO で訓練されたポリシーは DPO や e-DPO などのメソッドを越え、平均してノイズの多い選好信号やアウト・オブ・ディストリビューション(OOD)設定よりも堅牢であることが示された。
関連論文リスト
- Entropy Controllable Direct Preference Optimization [3.536605202672355]
提案するDPOは,提案するポリシのエントロピーを制御可能なH-DPOである。
実験の結果,H-DPO は様々なタスクにおいて DPO よりも優れており,数理タスクに対するpass@$k$ 評価において優れた結果が得られた。
論文 参考訳(メタデータ) (2024-11-12T07:09:44Z) - Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
我々は、優先不確実性ペナル化スキームを導入し、DPOの悲観的な枠組みを開発する。
ペナル化は、不確実なサンプルの損失勾配を減衰させる損失の補正として機能する。
我々は,バニラDPOと比較して全体的な性能が向上し,高い不確実性選択/拒絶反応によるプロンプトの完成度も向上した。
論文 参考訳(メタデータ) (2024-10-26T14:24:37Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
報奨条件付き大言語モデル(LLM)を導入し、データセット内の応答品質のスペクトル全体から学習する。
そこで本稿では,品質スコアに優先ペアを条件付け,報酬を加算したデータセットを構築する,効果的なデータレバーベリング手法を提案する。
論文 参考訳(メタデータ) (2024-10-10T16:01:51Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
本稿では,BMC という名前のペアデータにおけるブリッジ・アンド・モデリングの効果的なフレームワークを提案する。
目的の修正によって、ペアの選好信号の一貫性と情報性が向上する。
DPOだけではこれらの相関をモデル化し、ニュアンス付き変動を捉えるには不十分である。
論文 参考訳(メタデータ) (2024-08-14T11:29:47Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
言語モデル (LM) は、好みのアノテーションから派生した報酬関数を最大化する。
DPOは、報酬モデルや強化学習を適用することなく、優先データに直接ポリシーを訓練する一般的なオフラインアライメント手法である。
この現象を解析し, 生成対よりも真の嗜好分布のより良いプロキシを得るため, 蒸留を提案する。
論文 参考訳(メタデータ) (2024-05-29T17:39:48Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - D2PO: Discriminator-Guided DPO with Response Evaluation Models [63.71853401569461]
学習を通して嗜好が収集されるオンライン環境において,識別器誘導型DPOであるD2POを提案する。
金の選好を収集する際、これらは政策の訓練だけでなく、銀ラベルによる政策訓練のためのさらに総合的なデータに対する差別的な反応評価モデルを訓練するために利用します。
DPOで政策を訓練し、従来のPPOを上回り、政策モデルから分離した差別者を維持することの恩恵を受けるのが最も効果的である。
論文 参考訳(メタデータ) (2024-05-02T17:44:41Z) - RS-DPO: A Hybrid Rejection Sampling and Direct Preference Optimization Method for Alignment of Large Language Models [7.676477609461592]
人間のフィードバックからの強化学習(RLHF)は、大きな言語モデルとユーザの意図を結びつけるために広く採用されている。
DPOは、ポリシーモデルではなく、人間のアノテーションと代替LDMから生成される対照的な反応に依存している。
本稿では,サンプリングリジェクション(RS)とDPOを体系的に組み合わせることで,両課題に対処する。
提案手法は,資源環境が制限されたLLMを効果的に微調整し,ユーザ意図との整合性を向上する。
論文 参考訳(メタデータ) (2024-02-15T16:00:58Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
提案手法は,リジェクションサンプリングを用いた最適ポリシーからのソース選好データに対する新しいアプローチを提案する。
また、嗜好モデルの観点から、SLiC(Sequence Likelihood)とDPO(Direct Preference Optimization)の両方で使用される損失関数を強化する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-13T01:07:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。