論文の概要: Maritime Search and Rescue Missions with Aerial Images: A Survey
- arxiv url: http://arxiv.org/abs/2411.07649v1
- Date: Tue, 12 Nov 2024 08:57:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:21:18.740604
- Title: Maritime Search and Rescue Missions with Aerial Images: A Survey
- Title(参考訳): 航空画像を用いた海中探査・救助ミッションの実態調査
- Authors: Juan P. Martinez-Esteso, Francisco J. Castellanos, Jorge Calvo-Zaragoza, Antonio Javier Gallego,
- Abstract要約: 従来の手法と、機械学習とニューラルネットワークに基づくより高度なアプローチの両方を含む、これまでに提案された手法を分析します。
私たちは、データ収集のためにチームを配置することなく、より広い範囲のシナリオをカバーするために合成データを使用することを考慮しています。
- 参考スコア(独自算出の注目度): 12.532571610398767
- License:
- Abstract: The speed of response by search and rescue teams at sea is of vital importance, as survival may depend on it. Recent technological advancements have led to the development of more efficient systems for locating individuals involved in a maritime incident, such as the use of Unmanned Aerial Vehicles (UAVs) equipped with cameras and other integrated sensors. Over the past decade, several researchers have contributed to the development of automatic systems capable of detecting people using aerial images, particularly by leveraging the advantages of deep learning. In this article, we provide a comprehensive review of the existing literature on this topic. We analyze the methods proposed to date, including both traditional techniques and more advanced approaches based on machine learning and neural networks. Additionally, we take into account the use of synthetic data to cover a wider range of scenarios without the need to deploy a team to collect data, which is one of the major obstacles for these systems. Overall, this paper situates the reader in the field of detecting people at sea using aerial images by quickly identifying the most suitable methodology for each scenario, as well as providing an in-depth discussion and direction for future trends.
- Abstract(参考訳): 海上での捜索救助隊の対応速度は、生存がそれに依存する可能性があるため、極めて重要である。
近年の技術進歩により、無人航空機(UAV)にカメラや他の統合センサーを装備するなど、海難事故に関与した個人を見つけるためのより効率的なシステムの開発が進められている。
過去10年間、いくつかの研究者が、特に深層学習の利点を活用して、空中画像を用いて人を検出する自動システムの開発に貢献してきた。
本稿では,既存の文献について概観する。
従来の手法と、機械学習とニューラルネットワークに基づくより高度なアプローチの両方を含む、これまでに提案された手法を分析します。
さらに、データ収集のためにチームを配置する必要がなく、より広い範囲のシナリオをカバーするために合成データを使用することも考慮しています。
本論文は,各シナリオに最適な方法論を迅速に特定し,将来の動向について詳細な議論と方向性を提供することにより,海上画像を用いた海上人物検出の分野における読者の立場を定めている。
関連論文リスト
- PDSR: Efficient UAV Deployment for Swift and Accurate Post-Disaster Search and Rescue [2.367791790578455]
本稿では,PDSR(Post-Disaster Search and Rescue)のための包括的フレームワークを提案する。
この概念の中心は、多様なセンシング、通信、情報機能を備えたUAVスワムの迅速な展開である。
提案手法は従来の手法よりもはるかに高速に損傷領域の完全なカバレッジを実現することを目的としている。
論文 参考訳(メタデータ) (2024-10-30T12:46:15Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Survey of Deep Learning for Autonomous Surface Vehicles in the Marine
Environment [15.41166179659646]
今後数年以内に、幅広い用途で利用できる高度な自動運転技術が提供される予定だ。
本稿では,ASV関連分野におけるディープラーニング(DL)手法の実装に関する既存研究について検討する。
論文 参考訳(メタデータ) (2022-10-16T08:46:17Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
本研究では,情報,安全,解釈可能な地図作成と計画に3次元シーン補完を活用することによって,深層学習を探索に統合する新しい手法を提案する。
本手法は,地図の精度を最小限に抑えることで,ベースラインに比べて環境のカバレッジを73%高速化できることを示す。
最終地図にシーン完了が含まれていなくても、ロボットがより情報的な経路を選択するように誘導し、ロボットのセンサーでシーンの測定を35%高速化できることが示される。
論文 参考訳(メタデータ) (2022-08-17T14:19:33Z) - The State of Aerial Surveillance: A Survey [62.198765910573556]
本稿では、コンピュータビジョンとパターン認識の観点から、人間中心の空中監視タスクの概要を概観する。
主な対象は、単体または複数の被験者が検出され、特定され、追跡され、再同定され、その振る舞いが分析される人間である。
論文 参考訳(メタデータ) (2022-01-09T20:13:27Z) - Fail-Safe Human Detection for Drones Using a Multi-Modal Curriculum
Learning Approach [1.094245191265935]
KUL-UAVSAFEは、ドローンによる安全クリティカルな人検出の研究のための第一種データセットである。
本稿では,クロスフュージョンハイウェイを用いたCNNアーキテクチャを提案し,マルチモーダルデータのためのカリキュラム学習戦略を提案する。
論文 参考訳(メタデータ) (2021-09-28T12:34:13Z) - Deep Learning for Embodied Vision Navigation: A Survey [108.13766213265069]
身体的視覚ナビゲーション」問題では、エージェントが3D環境をナビゲートする必要がある。
本稿では、総合的な文献調査を提供することで、視覚ナビゲーションの具体的分野における現在の研究の概要を確立することを試みる。
論文 参考訳(メタデータ) (2021-07-07T12:09:04Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
多様なオープンワールド環境における自律的な探索とナビゲーションのためのロボット学習システムについて述べる。
本手法のコアとなるのは、画像の非パラメトリックトポロジカルメモリとともに、距離と行動の学習された潜在変数モデルである。
学習方針を規則化するために情報ボトルネックを使用し、(i)目標のコンパクトな視覚的表現、(ii)一般化能力の向上、(iii)探索のための実行可能な目標をサンプリングするためのメカニズムを提供する。
論文 参考訳(メタデータ) (2021-04-12T23:14:41Z) - AutoSOS: Towards Multi-UAV Systems Supporting Maritime Search and Rescue
with Lightweight AI and Edge Computing [27.15999421608932]
本稿では,自律型マルチロボット探索・救助支援プラットフォームの開発を支援するAutoSOSプロジェクトの方向性について述べる。
このプラットフォームは、新しい適応型ディープラーニングアルゴリズムを用いて、環境の初期評価のための偵察ミッションを実行することを目的としている。
ドローンが潜在的な物体を見つけると、そのセンサーデータを船に送る。
論文 参考訳(メタデータ) (2020-05-07T12:22:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。