論文の概要: AutoSOS: Towards Multi-UAV Systems Supporting Maritime Search and Rescue
with Lightweight AI and Edge Computing
- arxiv url: http://arxiv.org/abs/2005.03409v1
- Date: Thu, 7 May 2020 12:22:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 00:09:03.738680
- Title: AutoSOS: Towards Multi-UAV Systems Supporting Maritime Search and Rescue
with Lightweight AI and Edge Computing
- Title(参考訳): AutoSOS: 軽量AIとエッジコンピューティングによる海中探索と救助を支援するマルチUAVシステムを目指す
- Authors: Jorge Pe\~na Queralta, Jenni Raitoharju, Tuan Nguyen Gia, Nikolaos
Passalis, Tomi Westerlund
- Abstract要約: 本稿では,自律型マルチロボット探索・救助支援プラットフォームの開発を支援するAutoSOSプロジェクトの方向性について述べる。
このプラットフォームは、新しい適応型ディープラーニングアルゴリズムを用いて、環境の初期評価のための偵察ミッションを実行することを目的としている。
ドローンが潜在的な物体を見つけると、そのセンサーデータを船に送る。
- 参考スコア(独自算出の注目度): 27.15999421608932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rescue vessels are the main actors in maritime safety and rescue operations.
At the same time, aerial drones bring a significant advantage into this
scenario. This paper presents the research directions of the AutoSOS project,
where we work in the development of an autonomous multi-robot search and rescue
assistance platform capable of sensor fusion and object detection in embedded
devices using novel lightweight AI models. The platform is meant to perform
reconnaissance missions for initial assessment of the environment using novel
adaptive deep learning algorithms that efficiently use the available sensors
and computational resources on drones and rescue vessel. When drones find
potential objects, they will send their sensor data to the vessel to verity the
findings with increased accuracy. The actual rescue and treatment operation are
left as the responsibility of the rescue personnel. The drones will
autonomously reconfigure their spatial distribution to enable multi-hop
communication, when a direct connection between a drone transmitting
information and the vessel is unavailable.
- Abstract(参考訳): 救助船は海上の安全と救助活動の主役である。
同時に、空飛ぶドローンはこのシナリオに大きな利点をもたらす。
本稿では,新しい軽量AIモデルを用いた組み込みデバイスにおけるセンサフュージョンと物体検出が可能な自律型マルチロボット探索・救助支援プラットフォームの開発を支援するAutoSOSプロジェクトの方向性について述べる。
このプラットフォームは、ドローンや救助船で利用可能なセンサーと計算資源を効率的に利用する新しい適応型ディープラーニングアルゴリズムを使用して、環境の初期評価のための偵察ミッションを実行することを目的としている。
ドローンが潜在的な物体を見つけたら、そのセンサーデータを船に送り、その発見を精度良く検証する。
実際の救助・処理作業は救助員の責任として残されている。
ドローンは、複数のホップ通信を可能にするために、自律的に空間分布を再構成する。
関連論文リスト
- Maritime Search and Rescue Missions with Aerial Images: A Survey [12.532571610398767]
従来の手法と、機械学習とニューラルネットワークに基づくより高度なアプローチの両方を含む、これまでに提案された手法を分析します。
私たちは、データ収集のためにチームを配置することなく、より広い範囲のシナリオをカバーするために合成データを使用することを考慮しています。
論文 参考訳(メタデータ) (2024-11-12T08:57:21Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - ADAPT: An Open-Source sUAS Payload for Real-Time Disaster Prediction and
Response with AI [55.41644538483948]
小型無人航空機システム(sUAS)は、多くの人道支援や災害対応作戦において顕著な構成要素となっている。
我々は,SUAS上にリアルタイムAIとコンピュータビジョンをデプロイするための,オープンソースのADAPTマルチミッションペイロードを開発した。
本研究では,河川氷の状態を監視し,破滅的な洪水現象をタイムリーに予測するための,リアルタイム・飛行中の氷分断の例を示す。
論文 参考訳(メタデータ) (2022-01-25T14:51:19Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Fail-Safe Human Detection for Drones Using a Multi-Modal Curriculum
Learning Approach [1.094245191265935]
KUL-UAVSAFEは、ドローンによる安全クリティカルな人検出の研究のための第一種データセットである。
本稿では,クロスフュージョンハイウェイを用いたCNNアーキテクチャを提案し,マルチモーダルデータのためのカリキュラム学習戦略を提案する。
論文 参考訳(メタデータ) (2021-09-28T12:34:13Z) - Safe Vessel Navigation Visually Aided by Autonomous Unmanned Aerial
Vehicles in Congested Harbors and Waterways [9.270928705464193]
この研究は、従来のRGBカメラと補助的な絶対位置決めシステム(GPSなど)で捉えた長距離視覚データから未知の物体までの距離を検知し推定する最初の試みである。
シミュレーション結果は,UAV支援艦艇の視覚支援航法における提案手法の精度と有効性を示すものである。
論文 参考訳(メタデータ) (2021-08-09T08:15:17Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
無人航空機(UAV)は次世代無線通信ネットワークにおいて有望な技術であると考えられている。
人工知能(AI)は近年急速に成長し、成功している。
UAVベースのネットワークにおけるAIの潜在的な応用について概観する。
論文 参考訳(メタデータ) (2020-09-24T07:11:31Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
新たな問題は、建物の後ろに隠れている無人小型無人航空機(UAV)を追跡することである。
本稿では,悪意のある標的のリアルタイムかつ高精度な追跡のためのUAVの動的レーダネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-13T23:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。