Digital reconstruction of squeezed light for quantum information processing
- URL: http://arxiv.org/abs/2411.07666v1
- Date: Tue, 12 Nov 2024 09:32:44 GMT
- Title: Digital reconstruction of squeezed light for quantum information processing
- Authors: Huy Q. Nguyen, Ivan Derkach, Adnan A. E. Hajomer, Hou-Man Chin, Akash nag Oruganti, Ulrik L. Andersen, Vladyslav Usenko, Tobias Gehring,
- Abstract summary: We propose and demonstrate an asynchronous detection method for squeezed light that eliminates the need for complex systems.
We validate the feasibility of our approach in two key applications: the distribution of squeezed light over a 10 km fiber channel, and secure quantum key distribution between two labs connected via deployed fiber.
This demonstrates a practical digital reconstruction method for squeezed light, opening new avenues for practical distributed quantum sensing networks and high-performance and long-distance quantum communication.
- Score: 1.7466032719896136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Squeezed light plays a vital role in quantum information processing. By nature, it is highly sensitive, which presents significant practical challenges, particularly in remote detection, traditionally requiring complex systems such as active phase locking, clock synchronization, and polarization control. Here, we propose and demonstrate an asynchronous detection method for squeezed light that eliminates the need for these complex systems. By employing radio-frequency heterodyne detection with a locally generated local oscillator and applying a series of digital unitary transformations, we successfully reconstruct squeezed states of light. We validate the feasibility of our approach in two key applications: the distribution of squeezed light over a 10 km fiber channel, and secure quantum key distribution between two labs connected via deployed fiber based on continuous variables using squeezed vacuum states without active modulation. This demonstrates a practical digital reconstruction method for squeezed light, opening new avenues for practical distributed quantum sensing networks and high-performance and long-distance quantum communication using squeezed states and standard telecom technology.
Related papers
- Scalable Multipartite Entanglement of Remote Rare-earth Ion Qubits [3.9514210525254785]
Single photon emitters with internal spin are leading contenders for developing quantum repeater networks.
We introduce a scalable approach to quantum networking that utilizes frequency erasing photon detection and real-time quantum control.
Our results provide a practical route to overcoming universal limitations imposed by non-uniformity and instability in solid-state emitters.
arXiv Detail & Related papers (2024-02-25T23:55:29Z) - On-demand transposition across light-matter interaction regimes in
bosonic cQED [69.65384453064829]
Bosonic cQED employs the light field of high-Q superconducting cavities coupled to non-linear circuit elements.
We present the first experiment to achieve fast switching of the interaction regime without deteriorating the cavity coherence.
Our work opens up a new paradigm to probe the full range of light-matter interaction dynamics within a single platform.
arXiv Detail & Related papers (2023-12-22T13:01:32Z) - Wide-band Unambiguous Quantum Sensing via Geodesic Evolution [11.34191332168515]
We present a quantum sensing technique that utilizes a sequence of $pi$ pulses to cyclically drive qubit dynamics.
The significance of this quantum sensing technique extends to the detection of complex signals and the control of intricate quantum environments.
arXiv Detail & Related papers (2023-07-20T02:31:58Z) - Multimode Squeezed State for Reconfigurable Quantum Networks at
Telecommunication Wavelengths [0.0]
We present an experimental source of multimode squeezed states of light at telecommunication wavelengths.
Generation at such wavelengths is especially important as it can enable quantum information processing, communication, and sensing beyond the laboratory scale.
Results pave the way for a scalable implementation of continuous variable quantum information protocols at telecommunication wavelengths.
arXiv Detail & Related papers (2023-06-12T17:52:40Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Optical Entanglement of Distinguishable Quantum Emitters [0.0]
We propose and demonstrate an efficient method for entangling emitters with optical transitions separated by many linewidths.
In our approach, electro-optic modulators enable a single photon to herald a parity measurement on a pair of spin qubits.
Working with distinguishable emitters allows for individual qubit addressing and readout, enabling parallel control and entanglement of both co-located and spatially separated emitters.
arXiv Detail & Related papers (2021-08-24T19:37:08Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Integrated micro-comb sources for quantum optical applications [0.0]
We review progress on the realization of energy-time entangled optical frequency combs.
We discuss how photonic integration and the use of fiber-optic telecommunications components can enable quantum state control.
arXiv Detail & Related papers (2020-01-08T03:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.