Novel View Synthesis with Pixel-Space Diffusion Models
- URL: http://arxiv.org/abs/2411.07765v1
- Date: Tue, 12 Nov 2024 12:58:33 GMT
- Title: Novel View Synthesis with Pixel-Space Diffusion Models
- Authors: Noam Elata, Bahjat Kawar, Yaron Ostrovsky-Berman, Miriam Farber, Ron Sokolovsky,
- Abstract summary: generative models are being increasingly employed in novel view synthesis (NVS)
We adapt a modern diffusion model architecture for end-to-end NVS in the pixel space.
We introduce a novel NVS training scheme that utilizes single-view datasets, capitalizing on their relative abundance.
- Score: 4.844800099745365
- License:
- Abstract: Synthesizing a novel view from a single input image is a challenging task. Traditionally, this task was approached by estimating scene depth, warping, and inpainting, with machine learning models enabling parts of the pipeline. More recently, generative models are being increasingly employed in novel view synthesis (NVS), often encompassing the entire end-to-end system. In this work, we adapt a modern diffusion model architecture for end-to-end NVS in the pixel space, substantially outperforming previous state-of-the-art (SOTA) techniques. We explore different ways to encode geometric information into the network. Our experiments show that while these methods may enhance performance, their impact is minor compared to utilizing improved generative models. Moreover, we introduce a novel NVS training scheme that utilizes single-view datasets, capitalizing on their relative abundance compared to their multi-view counterparts. This leads to improved generalization capabilities to scenes with out-of-domain content.
Related papers
- LVSM: A Large View Synthesis Model with Minimal 3D Inductive Bias [50.13457154615262]
We propose a transformer-based approach for scalable and generalizable novel view synthesis from sparse-view inputs.
We introduce two architectures: (1) an encoder-decoder LVSM, which encodes input image tokens into a fixed number of 1D latent tokens; and (2) a decoder-only LVSM, which directly maps input images to novel-view outputs.
arXiv Detail & Related papers (2024-10-22T17:58:28Z) - ViewCrafter: Taming Video Diffusion Models for High-fidelity Novel View Synthesis [63.169364481672915]
We propose textbfViewCrafter, a novel method for synthesizing high-fidelity novel views of generic scenes from single or sparse images.
Our method takes advantage of the powerful generation capabilities of video diffusion model and the coarse 3D clues offered by point-based representation to generate high-quality video frames.
arXiv Detail & Related papers (2024-09-03T16:53:19Z) - MultiDiff: Consistent Novel View Synthesis from a Single Image [60.04215655745264]
MultiDiff is a novel approach for consistent novel view synthesis of scenes from a single RGB image.
Our results demonstrate that MultiDiff outperforms state-of-the-art methods on the challenging, real-world datasets RealEstate10K and ScanNet.
arXiv Detail & Related papers (2024-06-26T17:53:51Z) - Generalizable Implicit Neural Representation As a Universal Spatiotemporal Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-06-13T02:03:22Z) - GenS: Generalizable Neural Surface Reconstruction from Multi-View Images [20.184657468900852]
GenS is an end-to-end generalizable neural surface reconstruction model.
Our representation is more powerful, which can recover high-frequency details while maintaining global smoothness.
Experiments on popular benchmarks show that our model can generalize well to new scenes.
arXiv Detail & Related papers (2024-06-04T17:13:10Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
We introduce a novel neural rendering technique to solve image-to-3D from a single view.
Our approach employs the signed distance function as the surface representation and incorporates generalizable priors through geometry-encoding volumes and HyperNetworks.
Our experiments show the advantages of our proposed approach with consistent results and rapid generation.
arXiv Detail & Related papers (2023-12-24T08:42:37Z) - Multi-View Unsupervised Image Generation with Cross Attention Guidance [23.07929124170851]
This paper introduces a novel pipeline for unsupervised training of a pose-conditioned diffusion model on single-category datasets.
We identify object poses by clustering the dataset through comparing visibility and locations of specific object parts.
Our model, MIRAGE, surpasses prior work in novel view synthesis on real images.
arXiv Detail & Related papers (2023-12-07T14:55:13Z) - SODA: Bottleneck Diffusion Models for Representation Learning [75.7331354734152]
We introduce SODA, a self-supervised diffusion model, designed for representation learning.
The model incorporates an image encoder, which distills a source view into a compact representation, that guides the generation of related novel views.
We show that by imposing a tight bottleneck between the encoder and a denoising decoder, we can turn diffusion models into strong representation learners.
arXiv Detail & Related papers (2023-11-29T18:53:34Z) - Enhancing NeRF akin to Enhancing LLMs: Generalizable NeRF Transformer
with Mixture-of-View-Experts [88.23732496104667]
Cross-scene generalizable NeRF models have become a new spotlight of the NeRF field.
We bridge "neuralized" architectures with the powerful Mixture-of-Experts (MoE) idea from large language models.
Our proposed model, dubbed GNT with Mixture-of-View-Experts (GNT-MOVE), has experimentally shown state-of-the-art results when transferring to unseen scenes.
arXiv Detail & Related papers (2023-08-22T21:18:54Z) - Generalizable Patch-Based Neural Rendering [46.41746536545268]
We propose a new paradigm for learning models that can synthesize novel views of unseen scenes.
Our method is capable of predicting the color of a target ray in a novel scene directly, just from a collection of patches sampled from the scene.
We show that our approach outperforms the state-of-the-art on novel view synthesis of unseen scenes even when being trained with considerably less data than prior work.
arXiv Detail & Related papers (2022-07-21T17:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.