論文の概要: Reliable-loc: Robust sequential LiDAR global localization in large-scale street scenes based on verifiable cues
- arxiv url: http://arxiv.org/abs/2411.07815v1
- Date: Sat, 09 Nov 2024 07:28:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:20:30.631505
- Title: Reliable-loc: Robust sequential LiDAR global localization in large-scale street scenes based on verifiable cues
- Title(参考訳): 信頼性位置:検証可能な手がかりに基づく大規模街路シーンにおけるロバスト連続LiDARグローバルローカライゼーション
- Authors: Xianghong Zou, Jianping Li, Weitong Wu, Fuxun Liang, Bisheng Yang, Zhen Dong,
- Abstract要約: 逐次LiDARデータにおける検証可能なキューを利用した,LiDARに基づく信頼性のあるグローバルローカライゼーション(Reliable-loc)を提案する。
本稿では,シーケンシャルなポーズの不確実性によって誘導される局所状態監視機構を提案する。
信頼性の高い場所は、大規模で複雑なストリートシーンで高い堅牢性、正確性、効率性を示す。
- 参考スコア(独自算出の注目度): 8.074154946982516
- License:
- Abstract: Wearable laser scanning (WLS) system has the advantages of flexibility and portability. It can be used for determining the user's path within a prior map, which is a huge demand for applications in pedestrian navigation, collaborative mapping, augmented reality, and emergency rescue. However, existing LiDAR-based global localization methods suffer from insufficient robustness, especially in complex large-scale outdoor scenes with insufficient features and incomplete coverage of the prior map. To address such challenges, we propose LiDAR-based reliable global localization (Reliable-loc) exploiting the verifiable cues in the sequential LiDAR data. First, we propose a Monte Carlo Localization (MCL) based on spatially verifiable cues, utilizing the rich information embedded in local features to adjust the particles' weights hence avoiding the particles converging to erroneous regions. Second, we propose a localization status monitoring mechanism guided by the sequential pose uncertainties and adaptively switching the localization mode using the temporal verifiable cues to avoid the crash of the localization system. To validate the proposed Reliable-loc, comprehensive experiments have been conducted on a large-scale heterogeneous point cloud dataset consisting of high-precision vehicle-mounted mobile laser scanning (MLS) point clouds and helmet-mounted WLS point clouds, which cover various street scenes with a length of over 20km. The experimental results indicate that Reliable-loc exhibits high robustness, accuracy, and efficiency in large-scale, complex street scenes, with a position accuracy of 1.66m, yaw accuracy of 3.09 degrees, and achieves real-time performance. For the code and detailed experimental results, please refer to https://github.com/zouxianghong/Reliable-loc.
- Abstract(参考訳): ウェアラブルレーザースキャン(WLS)システムは、柔軟性とポータビリティの利点がある。
これは、歩行者ナビゲーション、コラボレーティブマッピング、拡張現実、緊急救助などのアプリケーションに対する大きな需要である。
しかし、既存のLiDARベースのグローバルローカライゼーション手法は、特に複雑な大規模屋外シーンにおいて、機能不足と事前マップの不完全なカバレッジに悩まされている。
このような課題に対処するために、逐次LiDARデータにおける検証可能なキューを利用する、LiDARベースの信頼性のあるグローバルローカライゼーション(Reliable-loc)を提案する。
まず、局所的な特徴に埋め込まれた豊富な情報を利用して、粒子の重みを調整することで、誤った領域に収束する粒子を避けることを目的とした、空間的に検証可能なキューに基づくモンテカルロ局在(MCL)を提案する。
第2に、シーケンシャルポーズの不確実性によって誘導される局所状態監視機構を提案し、時間的検証可能なキューを用いて局所モードを適応的に切り替えて、局所システムのクラッシュを回避する。
提案したReliable-locを検証するために,高精度な車両搭載移動レーザ走査(MLS)点雲とヘルメット搭載WLS点雲からなる大規模な異種点雲データセットを用いて,20km以上のストリートシーンをカバーする総合的な実験を行った。
実験結果から, 大規模で複雑な街路シーンでは信頼性, 精度, 効率が高く, 位置精度は1.66m, 精度は3.09度であり, リアルタイムな性能を実現していることがわかった。
コードと詳細な実験結果については、https://github.com/zouxianghong/Reliable-locを参照してください。
関連論文リスト
- MapLocNet: Coarse-to-Fine Feature Registration for Visual Re-Localization in Navigation Maps [8.373285397029884]
伝統的なローカライゼーションアプローチは、正確に注釈付けされたランドマークからなる高定義(HD)マップに依存している。
本稿では,画像登録にインスパイアされたトランスフォーマーを用いたニューラルリローカライズ手法を提案する。
提案手法は, nuScenes と Argoverse の両方のデータセット上で, 現在最先端の OrienterNet を著しく上回っている。
論文 参考訳(メタデータ) (2024-07-11T14:51:18Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - RaLF: Flow-based Global and Metric Radar Localization in LiDAR Maps [8.625083692154414]
我々は、環境のLiDARマップにレーダースキャンをローカライズするための、新しいディープニューラルネットワークベースのアプローチであるRaLFを提案する。
RaLFは、レーダーとLiDAR機能エンコーダ、グローバルなディスクリプタを生成する場所認識ヘッド、レーダースキャンとマップ間の3DF変換を予測するメートル法ローカライゼーションヘッドで構成されている。
複数の実世界の運転データセットに対する我々のアプローチを広く評価し、RaLFが位置認識とメートル法ローカライゼーションの両方において最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-09-18T15:37:01Z) - LiDAR-aid Inertial Poser: Large-scale Human Motion Capture by Sparse
Inertial and LiDAR Sensors [38.60837840737258]
本研究では,大規模なシナリオにおいて,高精度な局所的なポーズとグローバルな軌跡を持つ3次元人間の動きを捉えるためのマルチセンサ融合法を提案する。
我々は,2段階のポーズ推定器を粗大な方法で設計し,そこでは点雲が粗大な体形状を提供し,IMU測定は局所的な動作を最適化する。
我々は,LiDAR-IMUマルチモーダルモキャップデータセット(LIPD)を長期シナリオで収集する。
論文 参考訳(メタデータ) (2022-05-30T20:15:11Z) - LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning [59.17191114000146]
LocUNet: 基地局(BSs)からの受信信号強度(RSS)のみに基づく深層学習手法
提案手法では,BSsからのRSSを,クラウド上に存在する可能性のある中央処理ユニット(CPU)にローカライズする。
推定されたBSのパスロスラジオマップを用いて、LocUNetは最先端の精度でユーザをローカライズし、無線マップの不正確性に対して高い堅牢性を享受する。
論文 参考訳(メタデータ) (2022-02-01T20:27:46Z) - Robust Monocular Localization in Sparse HD Maps Leveraging Multi-Task
Uncertainty Estimation [28.35592701148056]
スライドウインドウポーズグラフに基づく新しい単分子局在化手法を提案する。
効率的なマルチタスク不確実性認識モジュールを提案する。
我々の手法は、挑戦的な都市シナリオにおけるロバストで正確な6Dローカライズを可能にする。
論文 参考訳(メタデータ) (2021-10-20T13:46:15Z) - Real-time Outdoor Localization Using Radio Maps: A Deep Learning
Approach [59.17191114000146]
LocUNet: ローカライゼーションタスクのための畳み込み、エンドツーエンドのトレーニングニューラルネットワーク(NN)。
我々は,LocUNetがユーザを最先端の精度でローカライズし,無線マップ推定における不正確性が高いことを示す。
論文 参考訳(メタデータ) (2021-06-23T17:27:04Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - Learning to Localize Using a LiDAR Intensity Map [87.04427452634445]
自動運転車のリアルタイム・キャリブレーション非依存・効果的なローカライズシステムを提案する。
私たちの方法は、オンラインLiDARスイープと強度マップをジョイントディープ埋め込みスペースに埋め込む方法を学びます。
システム全体の動作は15hzで,さまざまなlidarセンサや環境においてセンチメートルレベルの精度を実現しています。
論文 参考訳(メタデータ) (2020-12-20T11:56:23Z) - Reconfigurable Voxels: A New Representation for LiDAR-Based Point Clouds [76.52448276587707]
本稿では,3次元点群から表現を構成する新しい手法であるReconfigurable Voxelsを提案する。
具体的には,各地区を一定数のボクセルで適応的にカバーするランダムウォーク方式を考案する。
この手法は,特に疎水領域において,ボクセル特性の安定性を効果的に向上することがわかった。
論文 参考訳(メタデータ) (2020-04-06T15:07:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。