Isometric Transformations for Image Augmentation in Mueller Matrix Polarimetry
- URL: http://arxiv.org/abs/2411.07918v1
- Date: Tue, 12 Nov 2024 16:50:13 GMT
- Title: Isometric Transformations for Image Augmentation in Mueller Matrix Polarimetry
- Authors: Christopher Hahne, Omar Rodriguez-Nunez, Éléa Gros, Théotim Lucas, Ekkehard Hewer, Tatiana Novikova, Theoni Maragkou, Philippe Schucht, Richard McKinley,
- Abstract summary: Mueller matrix polarimetry captures essential information about polarized light interactions with a sample.
Standard transformations like rotations and flips do not preserve the polarization properties in Mueller matrix images.
We introduce a versatile simulation framework that applies physically consistent rotations and flips to Mueller matrices.
- Score: 4.33959569757548
- License:
- Abstract: Mueller matrix polarimetry captures essential information about polarized light interactions with a sample, presenting unique challenges for data augmentation in deep learning due to its distinct structure. While augmentations are an effective and affordable way to enhance dataset diversity and reduce overfitting, standard transformations like rotations and flips do not preserve the polarization properties in Mueller matrix images. To this end, we introduce a versatile simulation framework that applies physically consistent rotations and flips to Mueller matrices, tailored to maintain polarization fidelity. Our experimental results across multiple datasets reveal that conventional augmentations can lead to misleading results when applied to polarimetric data, underscoring the necessity of our physics-based approach. In our experiments, we first compare our polarization-specific augmentations against real-world captures to validate their physical consistency. We then apply these augmentations in a semantic segmentation task, achieving substantial improvements in model generalization and performance. This study underscores the necessity of physics-informed data augmentation for polarimetric imaging in deep learning (DL), paving the way for broader adoption and more robust applications across diverse research in the field. In particular, our framework unlocks the potential of DL models for polarimetric datasets with limited sample sizes. Our code implementation is available at github.com/hahnec/polar_augment.
Related papers
- Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
We present a framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors.
Our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors.
To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets.
arXiv Detail & Related papers (2024-04-05T17:55:33Z) - Coupled generator decomposition for fusion of electro- and magnetoencephalography data [1.7102695043811291]
Data fusion modeling can identify common features across diverse data sources while accounting for source-specific variability.
We introduce the concept of a textitcoupled generator decomposition and demonstrate how it generalizes sparse principal component analysis for data fusion.
arXiv Detail & Related papers (2024-03-02T12:09:16Z) - Learning Collective Variables with Synthetic Data Augmentation through Physics-Inspired Geodesic Interpolation [1.4972659820929493]
In molecular dynamics simulations, rare events, such as protein folding, are typically studied using enhanced sampling techniques.
We propose a simulation-free data augmentation strategy using physics-inspired metrics to generate geodesics resembling protein folding transitions.
arXiv Detail & Related papers (2024-02-02T16:35:02Z) - RGM: A Robust Generalizable Matching Model [49.60975442871967]
We propose a deep model for sparse and dense matching, termed RGM (Robust Generalist Matching)
To narrow the gap between synthetic training samples and real-world scenarios, we build a new, large-scale dataset with sparse correspondence ground truth.
We are able to mix up various dense and sparse matching datasets, significantly improving the training diversity.
arXiv Detail & Related papers (2023-10-18T07:30:08Z) - Gradient-Based Feature Learning under Structured Data [57.76552698981579]
In the anisotropic setting, the commonly used spherical gradient dynamics may fail to recover the true direction.
We show that appropriate weight normalization that is reminiscent of batch normalization can alleviate this issue.
In particular, under the spiked model with a suitably large spike, the sample complexity of gradient-based training can be made independent of the information exponent.
arXiv Detail & Related papers (2023-09-07T16:55:50Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
Long-range correlation is essential for accurate monocular depth estimation.
We propose to leverage the Transformer to model this global context with an effective attention mechanism.
Our proposed model, termed DepthFormer, surpasses state-of-the-art monocular depth estimation methods with prominent margins.
arXiv Detail & Related papers (2022-03-27T05:03:56Z) - Polarimetric image augmentation [0.7559720049837457]
specular reflections impede autonomous navigation in urban environments.
We propose to enhance deep learning models through a regularized augmentation procedure applied to polarimetric data.
We observe an average of 18.1% improvement in IoU between non augmented and regularized training procedures on real world data.
arXiv Detail & Related papers (2020-05-22T08:00:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.