DuoLift-GAN:Reconstructing CT from Single-view and Biplanar X-Rays with Generative Adversarial Networks
- URL: http://arxiv.org/abs/2411.07941v1
- Date: Tue, 12 Nov 2024 17:11:18 GMT
- Title: DuoLift-GAN:Reconstructing CT from Single-view and Biplanar X-Rays with Generative Adversarial Networks
- Authors: Zhaoxi Zhang, Yueliang Ying,
- Abstract summary: We introduce DuoLift Generative Adversarial Networks (DuoLift-GAN), a novel architecture with dual branches that independently elevate 2D images and their features into 3D representations.
These 3D outputs are merged into a unified 3D feature map and decoded into a complete 3D chest volume, enabling richer 3D information capture.
- Score: 1.3812010983144802
- License:
- Abstract: Computed tomography (CT) provides highly detailed three-dimensional (3D) medical images but is costly, time-consuming, and often inaccessible in intraoperative settings (Organization et al. 2011). Recent advancements have explored reconstructing 3D chest volumes from sparse 2D X-rays, such as single-view or orthogonal double-view images. However, current models tend to process 2D images in a planar manner, prioritizing visual realism over structural accuracy. In this work, we introduce DuoLift Generative Adversarial Networks (DuoLift-GAN), a novel architecture with dual branches that independently elevate 2D images and their features into 3D representations. These 3D outputs are merged into a unified 3D feature map and decoded into a complete 3D chest volume, enabling richer 3D information capture. We also present a masked loss function that directs reconstruction towards critical anatomical regions, improving structural accuracy and visual quality. This paper demonstrates that DuoLift-GAN significantly enhances reconstruction accuracy while achieving superior visual realism compared to existing methods.
Related papers
- 3DPX: Single Panoramic X-ray Analysis Guided by 3D Oral Structure Reconstruction [19.164694943725202]
Panoramic X-ray (PX) is a prevalent modality in dentistry practice owing to its wide availability and low cost.
As a 2D projection of a 3D structure, PX suffers from anatomical information loss and PX diagnosis is limited compared to that with 3D imaging modalities.
2D-to-3D reconstruction methods have been explored for the ability to synthesize the absent 3D anatomical information from 2D PX for use in PX image analysis.
arXiv Detail & Related papers (2024-09-27T12:44:06Z) - Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling [14.341099905684844]
This paper investigates a 2D to 3D image translation method with a straightforward technique, enabling correlated 2D X-ray to 3D CT-like reconstruction.
We observe that existing approaches, which integrate information across multiple 2D views in the latent space lose valuable signal information during latent encoding. Instead, we simply repeat and the 2D views into higher-channel 3D volumes and approach the 3D reconstruction challenge as a straightforward 3D to 3D generative modeling problem.
This method enables the reconstructed 3D volume to retain valuable information from the 2D inputs, which are passed between channel states in a Swin U
arXiv Detail & Related papers (2024-06-26T15:18:20Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
We introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes.
First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes.
Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images.
arXiv Detail & Related papers (2024-02-05T19:00:45Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
We propose a new 2D-based model dubbed Slice SHift UNet which encodes three-dimensional features at 2D CNN's complexity.
More precisely multi-view features are collaboratively learned by performing 2D convolutions along the three planes of a volume.
The effectiveness of our approach is validated in Multi-Modality Abdominal Multi-Organ axis (AMOS) and Multi-Atlas Labeling Beyond the Cranial Vault (BTCV) datasets.
arXiv Detail & Related papers (2023-07-24T14:53:23Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - Oral-3Dv2: 3D Oral Reconstruction from Panoramic X-Ray Imaging with
Implicit Neural Representation [3.8215162658168524]
Oral-3Dv2 is a non-adversarial-learning-based model in 3D radiology reconstruction from a single panoramic X-ray image.
Our model learns to represent the 3D oral structure in an implicit way by mapping 2D coordinates into density values of voxels in the 3D space.
To the best of our knowledge, this is the first work of a non-adversarial-learning-based model in 3D radiology reconstruction from a single panoramic X-ray image.
arXiv Detail & Related papers (2023-03-21T18:17:27Z) - XDGAN: Multi-Modal 3D Shape Generation in 2D Space [60.46777591995821]
We propose a novel method to convert 3D shapes into compact 1-channel geometry images and leverage StyleGAN3 and image-to-image translation networks to generate 3D objects in 2D space.
The generated geometry images are quick to convert to 3D meshes, enabling real-time 3D object synthesis, visualization and interactive editing.
We show both quantitatively and qualitatively that our method is highly effective at various tasks such as 3D shape generation, single view reconstruction and shape manipulation, while being significantly faster and more flexible compared to recent 3D generative models.
arXiv Detail & Related papers (2022-10-06T15:54:01Z) - Weakly Supervised Volumetric Image Segmentation with Deformed Templates [80.04326168716493]
We propose an approach that is truly weakly-supervised in the sense that we only need to provide a sparse set of 3D point on the surface of target objects.
We will show that it outperforms a more traditional approach to weak-supervision in 3D at a reduced supervision cost.
arXiv Detail & Related papers (2021-06-07T22:09:34Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - Towards Realistic 3D Embedding via View Alignment [53.89445873577063]
This paper presents an innovative View Alignment GAN (VA-GAN) that composes new images by embedding 3D models into 2D background images realistically and automatically.
VA-GAN consists of a texture generator and a differential discriminator that are inter-connected and end-to-end trainable.
arXiv Detail & Related papers (2020-07-14T14:45:00Z) - 3D Probabilistic Segmentation and Volumetry from 2D projection images [10.32519161805588]
X-Ray imaging is quick, cheap and useful for front-line care assessment and intra-operative real-time imaging.
It suffers from projective information loss and lacks vital information on which many essential diagnostic biomarkers are based.
In this paper we explore probabilistic methods to reconstruct 3D volumetric images from 2D imaging modalities.
arXiv Detail & Related papers (2020-06-23T08:00:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.