論文の概要: DINO-LG: A Task-Specific DINO Model for Coronary Calcium Scoring
- arxiv url: http://arxiv.org/abs/2411.07976v6
- Date: Fri, 03 Jan 2025 17:40:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:10:07.203594
- Title: DINO-LG: A Task-Specific DINO Model for Coronary Calcium Scoring
- Title(参考訳): DINO-LG: 冠動脈スコーリングのためのタスク特異的DINOモデル
- Authors: Mahmut S. Gokmen, Caner Ozcan, Moneera N. Haque, Steve W. Leung, C. Seth Parker, W. Brent Seales, Cody Bumgardner,
- Abstract要約: 冠動脈疾患(CAD)は世界中で死亡率の高い疾患の一つである。
UNETアーキテクチャをベースとした従来の方法では、冠動脈カルシウム(CAC)を含む注記CTスキャンの不足など、課題に直面している。
本研究では,DINOの自己教師型学習(SSL)技術を取り入れることで,これらの制約に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Coronary artery disease (CAD), one of the leading causes of mortality worldwide, necessitates effective risk assessment strategies, with coronary artery calcium (CAC) scoring via computed tomography (CT) being a key method for prevention. Traditional methods, primarily based on UNET architectures implemented on pre-built models, face challenges like the scarcity of annotated CT scans containing CAC and imbalanced datasets, leading to reduced performance in segmentation and scoring tasks. In this study, we address these limitations by incorporating the self-supervised learning (SSL) technique of DINO (self-distillation with no labels), which trains without requiring CAC-specific annotations, enhancing its robustness in generating distinct features. The DINO-LG model, which leverages label guidance to focus on calcified areas, achieves significant improvements, with a sensitivity of 89% and specificity of 90% for detecting CAC-containing CT slices, compared to the standard DINO model's sensitivity of 79% and specificity of 77%. Additionally, false-negative and false-positive rates are reduced by 49% and 59%, respectively, instilling greater confidence in clinicians when ruling out calcification in low-risk patients and minimizing unnecessary imaging reviews by radiologists. Further, CAC scoring and segmentation tasks are conducted using a basic UNET architecture, applied specifically to CT slices identified by the DINO-LG model as containing calcified areas. This targeted approach enhances CAC scoring accuracy by feeding the UNET model with relevant slices, significantly improving diagnostic precision, reducing both false positives and false negatives, and ultimately lowering overall healthcare costs by minimizing unnecessary tests and treatments, presenting a valuable advancement in CAD risk assessment.
- Abstract(参考訳): 冠状動脈疾患 (CAD) は, 冠状動脈カルシウム (CAC) をCT(Computed tomography, CT) で測定し, 効果的なリスク評価戦略を必要としている。
従来の手法は、主にプレビルドモデルで実装されたUNETアーキテクチャに基づいており、CACと不均衡データセットを含む注釈付きCTスキャンの不足のような課題に直面しており、セグメンテーションやスコアリングタスクのパフォーマンスが低下する。
本研究では,CAC固有のアノテーションを必要としないDINO(ラベル付き自己蒸留)の自己教師型学習(SSL)技術を導入し,その頑健さを向上させることにより,これらの制約に対処する。
ラベルガイダンスを利用して石灰化領域にフォーカスするDINO-LGモデルは、標準のDINOモデルが79%、特異性が77%であるのに対し、CACを含むCTスライスを検出するための感度が89%、特異性が90%と大幅に改善された。
さらに、偽陰性率と偽陽性率をそれぞれ49%、偽陽性率を59%減らし、低リスク患者の石灰化を排除し、放射線医による不必要な画像レビューを最小限に抑えると、臨床医の信頼性を高める。
さらに、DINO-LGモデルで同定されたCTスライスに石灰化領域を含む基本UNETアーキテクチャを用いて、CACスコアとセグメンテーションタスクを実行する。
このアプローチは、UNETモデルに関連するスライスを供給し、診断精度を著しく改善し、偽陽性と偽陰性の両方を低減し、不必要な検査と治療を最小化し、最終的に医療コストを削減し、CADリスクアセスメントの貴重な進歩を示すことにより、CACスコアの精度を高める。
関連論文リスト
- Cancer-Net PCa-Seg: Benchmarking Deep Learning Models for Prostate Cancer Segmentation Using Synthetic Correlated Diffusion Imaging [65.83291923029985]
前立腺癌(PCa)は米国で最も多いがんであり、約30,000人、全診断の29%、2024年に35,000人が死亡した。
前立腺特異的抗原 (PSA) 検査やMRI (MRI) などの従来のスクリーニング法は診断において重要であるが、特異性や一般化性には限界がある。
我々はU-Net、SegResNet、Swin UNETR、Attention U-Net、LightM-UNetといった最先端のディープラーニングモデルを用いて、200ドルのCDIからPCa病変を抽出する。
論文 参考訳(メタデータ) (2025-01-15T22:23:41Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
460胸部X線で冠状動脈カルシウム(CAC)スコアを予測する深層学習アルゴリズムを開発した。
AICACモデルの診断精度は, 曲線下領域(AUC)で評価された。
論文 参考訳(メタデータ) (2024-03-27T16:56:14Z) - Automated Assessment of Critical View of Safety in Laparoscopic
Cholecystectomy [51.240181118593114]
胆嚢摘出術(胆嚢摘出術)は米国で最も一般的な手術の一つで、年間1.2万回以上の手術が施行されている。
LCは胆管損傷(BDI)の増加と関連しており、致死率と死亡率が高い。
本稿では,LCにおける安全性評価(CVS)の自動化を目的とした深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-09-13T22:01:36Z) - Assessing the performance of deep learning-based models for prostate
cancer segmentation using uncertainty scores [1.0499611180329804]
目的は前立腺がんの検出と診断のワークフローを改善することである。
最高性能モデルはアテンション R2U-Net で、連合(IoU)の平均インターセクションは76.3%、Dice similarity Coefficient(DSC)は全ゾーンのセグメンテーションの85%を達成している。
論文 参考訳(メタデータ) (2023-08-09T01:38:58Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Robust and Generalisable Segmentation of Subtle Epilepsy-causing
Lesions: a Graph Convolutional Approach [1.180462901068842]
FCD(Foccal cortical dysplasia)は薬剤抵抗性てんかんの主要な原因であり、手術で治療できる。
そのため、手動の傷口マスクは高価で、限定的であり、ラッター間変動が大きい。
本稿では,グラフ畳み込みネットワーク(GCN)を用いたセマンティックセグメンテーション(セマンティックセグメンテーション,セマンティックセグメンテーション,セマンティックセグメンテーション)の手法を提案する。
論文 参考訳(メタデータ) (2023-06-02T08:56:56Z) - Generative Models for Reproducible Coronary Calcium Scoring [3.1746159467221253]
冠動脈カルシウム(CAC)スコアは、冠動脈疾患(CHD)の強い、独立した予測因子である。
CACスコアリングは、石灰化のセグメンテーションに一定の強度レベルしきい値を適用する必要があるという臨床的定義のために、限られたインタースキャンに悩まされる。
本稿では,CACのセグメンテーションのしきい値を必要としないCAC手法を提案する。
論文 参考訳(メタデータ) (2022-05-24T10:59:32Z) - Nested-block self-attention for robust radiotherapy planning
segmentation [3.2541650155921142]
深層畳み込みネットワークは、頭頸部(HN)臓器のリスクセグメンテーション(OAR)において広く研究されている。
定期的な臨床治療計画のためのそれらの使用は、イメージングアーティファクトへの堅牢性の欠如、CT上の低い軟組織コントラスト、および異常な解剖の存在によって制限される。
我々は,任意の畳み込みネットワークと組み合わせることができる計算効率の良いネストブロック自己アテンション法(NBSA)を開発した。
論文 参考訳(メタデータ) (2021-02-26T15:28:47Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - Weakly-Supervised Lesion Segmentation on CT Scans using Co-Segmentation [18.58056402884405]
CTスキャンにおける病変分割は,病変・腫瘍の進展を正確に観察するための重要なステップである。
現在の慣行は、固形腫瘍の反応評価基準と呼ばれる不正確な代用に依存している。
本稿では,畳み込みニューラルネットワークを用いた弱教師付き病変分割法を提案する。
論文 参考訳(メタデータ) (2020-01-23T15:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。