論文の概要: Targeted Maximum Likelihood Estimation for Integral Projection Models in Population Ecology
- arxiv url: http://arxiv.org/abs/2411.08150v1
- Date: Tue, 12 Nov 2024 19:56:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:10:34.240124
- Title: Targeted Maximum Likelihood Estimation for Integral Projection Models in Population Ecology
- Title(参考訳): 個体群生態学における積分射影モデルのための最適最適推定法
- Authors: Yunzhe Zhou, Giles Hooker,
- Abstract要約: 積分射影モデルから導出した特性に対する頑健で効率的な推定器を開発する。
本研究はIdaho steppe plant communityとRotifer populationsの長期研究から得られた実データを用いて広範囲にわたるシミュレーションを行う。
- 参考スコア(独自算出の注目度): 4.209594014085132
- License:
- Abstract: Integral projection models (IPMs) are widely used to study population growth and the dynamics of demographic structure (e.g. age and size distributions) within a population.These models use data on individuals' growth, survival, and reproduction to predict changes in the population from one time point to the next and use these in turn to ask about long-term growth rates, the sensitivity of that growth rate to environmental factors, and aspects of the long term population such as how much reproduction concentrates in a few individuals; these quantities are not directly measurable from data and must be inferred from the model. Building IPMs requires us to develop models for individual fates over the next time step -- Did they survive? How much did they grow or shrink? Did they Reproduce? -- conditional on their initial state as well as on environmental covariates in a manner that accounts for the unobservable quantities that are are ultimately interested in estimating.Targeted maximum likelihood estimation (TMLE) methods are particularly well-suited to a framework in which we are largely interested in the consequences of models. These build machine learning-based models that estimate the probability distribution of the data we observe and define a target of inference as a function of these. The initial estimate for the distribution is then modified by tilting in the direction of the efficient influence function to both de-bias the parameter estimate and provide more accurate inference. In this paper, we employ TMLE to develop robust and efficient estimators for properties derived from a fitted IPM. Mathematically, we derive the efficient influence function and formulate the paths for the least favorable sub-models. Empirically, we conduct extensive simulations using real data from both long term studies of Idaho steppe plant communities and experimental Rotifer populations.
- Abstract(参考訳): 統合予測モデル(IPM)は、人口増加と人口構造(例えば年齢や人口分布)の動態を研究するために広く用いられており、これらのモデルでは、個体の成長、生存、繁殖に関するデータを用いて、ある時点から次の時点までの個体群の変化を予測する。
IPMの構築には、次のステップで個々の運命のモデルを開発することが必要です -- 生き残ったか? どのくらい成長したか、縮小したか? Reproduce? -- 初期状態と環境共変量に条件付けされているか。
これらの機械学習に基づくモデルを構築し、観測したデータの確率分布を推定し、推論の対象をそれらの関数として定義する。
分布の初期推定は、効率的な影響関数の方向を傾けてパラメータ推定のバイアスを減らし、より正確な推定を行うことによって修正される。
本稿では, TMLE を用いて, 装着したIPM から得られる特性に対して, 頑健で効率的な推定器を開発する。
数学的には、効率的な影響関数を導出し、最も好ましくないサブモデルに対する経路を定式化する。
本研究は,Idaho steppe plant communityとRotifer populationsの長期研究から得られた実データを用いて,広範囲にわたるシミュレーションを行った。
関連論文リスト
- How Aligned are Generative Models to Humans in High-Stakes Decision-Making? [10.225573060836478]
大規模生成モデル(LM)は、高い意思決定のためにますます検討されている。
この研究は、リシビズム予測の特定のケースにおいて、そのようなモデルが人間や予測AIモデルとどのように比較されるかを検討する。
論文 参考訳(メタデータ) (2024-10-20T19:00:59Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Scaling Laws Do Not Scale [54.72120385955072]
最近の研究によると、データセットのサイズが大きくなると、そのデータセットでトレーニングされたモデルのパフォーマンスが向上する。
このスケーリング法則の関係は、モデルのアウトプットの質を異なる集団がどのように認識するかと一致しないパフォーマンスを測定するために使われる指標に依存する、と我々は主張する。
異なるコミュニティは、互いに緊張関係にある価値を持ち、モデル評価に使用されるメトリクスについて、困難で、潜在的に不可能な選択をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-07-05T15:32:21Z) - Domain Adaptive Decision Trees: Implications for Accuracy and Fairness [28.37613618406726]
本稿ではドメイン適応決定木(DADT)を導入してドメイン適応の分野に貢献する。
DADTは、目標人口の分布に対応する外部情報に基づいて、情報ゲイン分割基準を調整する。
実データ上でDADTを実証し、シフトしたターゲット集団でテストする場合、標準決定木よりも精度が向上することを示す。
論文 参考訳(メタデータ) (2023-02-27T14:49:02Z) - Generative Causal Representation Learning for Out-of-Distribution Motion
Forecasting [13.99348653165494]
本稿では,分散シフト下での知識伝達を容易にするための生成因果学習表現を提案する。
ヒトの軌道予測モデルにおいて提案手法の有効性を評価する一方、GCRLは他の領域にも適用可能である。
論文 参考訳(メタデータ) (2023-02-17T00:30:44Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - JKOnet: Proximal Optimal Transport Modeling of Population Dynamics [69.89192135800143]
入力凸ニューラルネットワーク(ICNN)を用いて解いた(小さな)最適変位と測定値のエネルギーモデルを組み合わせたニューラルアーキテクチャを提案する。
人口動態の説明と予測のためのモデルの適用性を実証する。
論文 参考訳(メタデータ) (2021-06-11T12:30:43Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Model-based metrics: Sample-efficient estimates of predictive model
subpopulation performance [11.994417027132807]
健康状態の表示、診断、予測のために現在一般的に開発されている機械学習モデル$-$は、様々なパフォーマンス指標で評価される。
サブ集団のパフォーマンスメトリクスは、通常、そのサブグループのデータのみを使用して計算されるため、より小さなグループに対する分散推定が高くなる。
本稿では,予測モデルスコアの条件分布を記述した評価モデル$-$を用いて,モデルベース計量(MBM)の推定値を生成する。
論文 参考訳(メタデータ) (2021-04-25T19:06:34Z) - DeepCOVIDNet: An Interpretable Deep Learning Model for Predictive
Surveillance of COVID-19 Using Heterogeneous Features and their Interactions [2.30238915794052]
今後の新型コロナウイルス感染者の増加範囲を予測するための深層学習モデルを提案する。
様々なソースから収集したデータを用いて、米国全郡で7日以内に感染が拡大する範囲を推定する。
論文 参考訳(メタデータ) (2020-07-31T23:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。