Latent Haldane Models
- URL: http://arxiv.org/abs/2411.08202v1
- Date: Tue, 12 Nov 2024 21:49:15 GMT
- Title: Latent Haldane Models
- Authors: Anouar Moustaj, Lumen Eek, Malte Rontgen, Cristiane Morais Smith,
- Abstract summary: Latent symmetries, which materialize after performing isospectral reductions, have been shown to be instrumental in revealing novel topological phases in one-dimensional systems.
We construct a family of seemingly complicated two-dimensional models that result in energy-dependent Haldane models upon performing an isospectral reduction.
We then predict the location of the topological gaps in the aforementioned family of models and construct phase diagrams to determine where the topological phases lie in parameter space.
- Score: 0.0
- License:
- Abstract: Latent symmetries, which materialize after performing isospectral reductions, have recently been shown to be instrumental in revealing novel topological phases in one-dimensional systems, among many other applications. In this work, we explore how to construct a family of seemingly complicated two-dimensional models that result in energy-dependent Haldane models upon performing an isospectral reduction. In these models, we find energy-dependent latent Semenoff masses without introducing a staggered on-site potential. In addition, energy-dependent latent Haldane masses also emerge in decorated lattices with nearest-neighbor complex hoppings. Using the Haldane model's properties, we then predict the location of the topological gaps in the aforementioned family of models and construct phase diagrams to determine where the topological phases lie in parameter space. This idea yielded, for instance, useful insights in the case of a modified version of $\alpha$-graphyne and hexagonal plaquettes with additional decorations, where the gap-closing energies can be calculated using the ISR to predict topological phase transitions.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Latent Su-Schrieffer-Heeger models [0.0]
Su-Schrieffer-Heeger (SSH) chain is the reference model of a one-dimensional topological insulator.
Here, we harness recent graph-theoretical results to construct families of setups whose unit cell features neither of these symmetries.
This causes the isospectral reduction -- akin to an effective Hamiltonian -- of the resulting lattice to have the form of an SSH model.
arXiv Detail & Related papers (2023-10-11T16:00:21Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Two dimensional momentum state lattices [0.0]
Building on the development of momentum state lattices (MSLs) over the past decade, we introduce a simple extension of this technique to higher dimensions.
MSLs have enabled the realization of tight-binding models with tunable disorder, gauge fields, non-Hermiticity, and other features.
We discuss many of the direct extensions to this model, including the introduction of disorder and non-Hermiticity, which will enable the exploration of new transport and localization phenomena in higher dimensions.
arXiv Detail & Related papers (2023-05-29T09:57:56Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Interactions and Topology in Quantum Matter: Auxiliary Field Approach &
Generalized SSH Models [0.0]
This thesis presents a set of projects which lie at the intersection between strong correlations and topological phases of matter.
The first of these projects is a treatment of an infinite dimensional generalization of the SSH model with local Coulomb interactions which is solved exactly using DMFT-NRG.
The second set of projects involves the development of methods for formulating non-interacting auxiliary models for strongly correlated systems.
arXiv Detail & Related papers (2022-12-09T18:38:31Z) - A gravitationally induced decoherence model using Ashtekar variables [0.0]
We derive a relativistic gravitationally induced decoherence model using Ashtekar variables.
The model is formulated at the gauge invariant level using suitable geometrical clocks.
We discuss why in the model analysed here the application of a second Markov approximation is less straightforward than in some of the quantum mechanical models.
arXiv Detail & Related papers (2022-06-13T18:03:53Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
We introduce a new approach to reconstruction of the thermodynamic functions and phase boundaries in two-parametric statistical mechanics systems.
We use the proposed approach to accurately reconstruct the partition functions and phase diagrams of the Ising model and the exactly solvable non-equilibrium TASEP.
arXiv Detail & Related papers (2022-05-18T17:11:23Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.