SynapsNet: Enhancing Neuronal Population Dynamics Modeling via Learning Functional Connectivity
- URL: http://arxiv.org/abs/2411.08221v1
- Date: Tue, 12 Nov 2024 22:25:15 GMT
- Title: SynapsNet: Enhancing Neuronal Population Dynamics Modeling via Learning Functional Connectivity
- Authors: Parsa Delavari, Ipek Oruc, Timothy H Murphy,
- Abstract summary: We introduce SynapsNet, a novel deep-learning framework that effectively models population dynamics and functional interactions between neurons.
A shared decoder uses the input current, previous neuronal activity, neuron embedding, and behavioral data to predict the population activity in the next time step.
Our experiments, conducted on mouse cortical activity from publicly available datasets, demonstrate that SynapsNet consistently outperforms existing models in forecasting population activity.
- Score: 0.0
- License:
- Abstract: The availability of large-scale neuronal population datasets necessitates new methods to model population dynamics and extract interpretable, scientifically translatable insights. Existing deep learning methods often overlook the biological mechanisms underlying population activity and thus exhibit suboptimal performance with neuronal data and provide little to no interpretable information about neurons and their interactions. In response, we introduce SynapsNet, a novel deep-learning framework that effectively models population dynamics and functional interactions between neurons. Within this biologically realistic framework, each neuron, characterized by a latent embedding, sends and receives currents through directed connections. A shared decoder uses the input current, previous neuronal activity, neuron embedding, and behavioral data to predict the population activity in the next time step. Unlike common sequential models that treat population activity as a multichannel time series, SynapsNet applies its decoder to each neuron (channel) individually, with the learnable functional connectivity serving as the sole pathway for information flow between neurons. Our experiments, conducted on mouse cortical activity from publicly available datasets and recorded using the two most common population recording modalities (Ca imaging and Neuropixels) across three distinct tasks, demonstrate that SynapsNet consistently outperforms existing models in forecasting population activity. Additionally, our experiments on both real and synthetic data showed that SynapsNet accurately learns functional connectivity that reveals predictive interactions between neurons.
Related papers
- Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
State-of-the-art systems neuroscience experiments yield large-scale multimodal data, and these data sets require new tools for analysis.
Inspired by the success of large pretrained models in vision and language domains, we reframe the analysis of large-scale, cellular-resolution neuronal spiking data into an autoregressive generation problem.
We first trained Neuroformer on simulated datasets, and found that it both accurately predicted intrinsically simulated neuronal circuit activity, and also inferred the underlying neural circuit connectivity, including direction.
arXiv Detail & Related papers (2023-10-31T20:17:32Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
Neuromorphic computing relies on spike-based, energy-efficient communication.
We develop a tool to identify suitable configurations for neuron-based encoding of sample-based data into spike trains.
The WaLiN-GUI is provided open source and with documentation.
arXiv Detail & Related papers (2023-10-25T20:34:08Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Generalization of generative model for neuronal ensemble inference
method [0.0]
In this study, we extend the range of the variable for expressing the neuronal state, and generalize the likelihood of the model for extended variables.
This generalization without restriction of the binary input enables us to perform soft clustering and apply the method to non-stationary neuroactivity data.
arXiv Detail & Related papers (2022-11-07T07:58:29Z) - Understanding Neural Coding on Latent Manifolds by Sharing Features and
Dividing Ensembles [3.625425081454343]
Systems neuroscience relies on two complementary views of neural data, characterized by single neuron tuning curves and analysis of population activity.
These two perspectives combine elegantly in neural latent variable models that constrain the relationship between latent variables and neural activity.
We propose feature sharing across neural tuning curves, which significantly improves performance and leads to better-behaved optimization.
arXiv Detail & Related papers (2022-10-06T18:37:49Z) - STNDT: Modeling Neural Population Activity with a Spatiotemporal
Transformer [19.329190789275565]
We introduce SpatioTemporal Neural Data Transformer (STNDT), an NDT-based architecture that explicitly models responses of individual neurons.
We show that our model achieves state-of-the-art performance on ensemble level in estimating neural activities across four neural datasets.
arXiv Detail & Related papers (2022-06-09T18:54:23Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.