NeurFlow: Interpreting Neural Networks through Neuron Groups and Functional Interactions
- URL: http://arxiv.org/abs/2502.16105v1
- Date: Sat, 22 Feb 2025 06:01:03 GMT
- Title: NeurFlow: Interpreting Neural Networks through Neuron Groups and Functional Interactions
- Authors: Tue M. Cao, Nhat X. Hoang, Hieu H. Pham, Phi Le Nguyen, My T. Thai,
- Abstract summary: We propose a novel framework that transitions the focus from analyzing individual neurons to investigating groups of neurons.<n>Our automated framework, NeurFlow, first identifies core neurons and clusters them into groups based on shared functional relationships.
- Score: 16.00223741620103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the inner workings of neural networks is essential for enhancing model performance and interpretability. Current research predominantly focuses on examining the connection between individual neurons and the model's final predictions. Which suffers from challenges in interpreting the internal workings of the model, particularly when neurons encode multiple unrelated features. In this paper, we propose a novel framework that transitions the focus from analyzing individual neurons to investigating groups of neurons, shifting the emphasis from neuron-output relationships to functional interaction between neurons. Our automated framework, NeurFlow, first identifies core neurons and clusters them into groups based on shared functional relationships, enabling a more coherent and interpretable view of the network's internal processes. This approach facilitates the construction of a hierarchical circuit representing neuron interactions across layers, thus improving interpretability while reducing computational costs. Our extensive empirical studies validate the fidelity of our proposed NeurFlow. Additionally, we showcase its utility in practical applications such as image debugging and automatic concept labeling, thereby highlighting its potential to advance the field of neural network explainability.
Related papers
- Retinal Vessel Segmentation via Neuron Programming [17.609169389489633]
This paper introduces a novel approach to neural network design, termed neuron programming'', to enhance a network's representation ability at the neuronal level.
Comprehensive experiments validate that neuron programming can achieve competitive performance in retinal blood segmentation.
arXiv Detail & Related papers (2024-11-17T16:03:30Z) - Adapting the Biological SSVEP Response to Artificial Neural Networks [5.4712259563296755]
This paper introduces a novel approach to neuron significance assessment inspired by frequency tagging, a technique from neuroscience.
Experiments conducted with a convolutional neural network for image classification reveal notable harmonics and intermodulations in neuron-specific responses under part-based frequency tagging.
The proposed method holds promise for applications in network pruning, and model interpretability, contributing to the advancement of explainable artificial intelligence.
arXiv Detail & Related papers (2024-11-15T10:02:48Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
It has long been known in both neuroscience and AI that ''binding'' between neurons leads to a form of competitive learning.
We introduce Artificial rethinking together with arbitrary connectivity designs such as fully connected convolutional, or attentive mechanisms.
We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, uncertainty, and reasoning.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Statistical tuning of artificial neural network [0.0]
This study introduces methods to enhance the understanding of neural networks, focusing specifically on models with a single hidden layer.
We propose statistical tests to assess the significance of input neurons and introduce algorithms for dimensionality reduction.
This research advances the field of Explainable Artificial Intelligence by presenting robust statistical frameworks for interpreting neural networks.
arXiv Detail & Related papers (2024-09-24T19:47:03Z) - Automated Natural Language Explanation of Deep Visual Neurons with Large
Models [43.178568768100305]
This paper proposes a novel post-hoc framework for generating semantic explanations of neurons with large foundation models.
Our framework is designed to be compatible with various model architectures and datasets, automated and scalable neuron interpretation.
arXiv Detail & Related papers (2023-10-16T17:04:51Z) - Connected Hidden Neurons (CHNNet): An Artificial Neural Network for
Rapid Convergence [0.6218519716921521]
We propose a more robust model of artificial neural networks where the hidden neurons, residing in the same hidden layer, are interconnected that leads to rapid convergence.
With the experimental study of our proposed model in deep networks, we demonstrate that the model results in a noticeable increase in convergence rate compared to the conventional feed-forward neural network.
arXiv Detail & Related papers (2023-05-17T14:00:38Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
Cross-frequency coupling (CFC) is associated with information integration across populations of neurons.
We construct a model of CFC which predicts a computational role for observed $theta - gamma$ oscillatory circuits in the hippocampus and cortex.
We show that the presence of CFC increases the memory capacity of a population of neurons connected by plastic synapses.
arXiv Detail & Related papers (2022-04-05T17:13:36Z) - Neuronal Correlation: a Central Concept in Neural Network [22.764342635264452]
We show that neuronal correlation can be efficiently estimated via weight matrix.
We show that neuronal correlation significantly impacts on the accuracy of entropy estimation in high-dimensional hidden spaces.
arXiv Detail & Related papers (2022-01-22T15:01:50Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
Presence of sufficient number of OR-like neurons in a network can lead to classification brittleness and increased vulnerability to adversarial attacks.
We define AND-like neurons and propose measures to increase their proportion in the network.
Experimental results on the MNIST dataset suggest that our approach holds promise as a direction for further exploration.
arXiv Detail & Related papers (2021-02-15T08:19:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.