論文の概要: Robust Divergence Learning for Missing-Modality Segmentation
- arxiv url: http://arxiv.org/abs/2411.08305v1
- Date: Wed, 13 Nov 2024 03:03:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:10:29.790707
- Title: Robust Divergence Learning for Missing-Modality Segmentation
- Title(参考訳): 欠損モードセグメンテーションのためのロバストダイバージェンス学習
- Authors: Runze Cheng, Zhongao Sun, Ye Zhang, Chun Li,
- Abstract要約: マルチモーダルMRI(Multimodal Magnetic Resonance Imaging)は、脳腫瘍の亜領域を解析するための重要な補完情報を提供する。
自動セグメンテーションのための4つの一般的なMRIモダリティを用いた手法は成功しているが、画像品質の問題、一貫性のないプロトコル、アレルギー反応、コスト要因などにより、モダリティの欠如に悩まされることが多い。
H"古い発散と相互情報に基づく新しい単一モード並列処理ネットワークフレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.144772447916824
- License:
- Abstract: Multimodal Magnetic Resonance Imaging (MRI) provides essential complementary information for analyzing brain tumor subregions. While methods using four common MRI modalities for automatic segmentation have shown success, they often face challenges with missing modalities due to image quality issues, inconsistent protocols, allergic reactions, or cost factors. Thus, developing a segmentation paradigm that handles missing modalities is clinically valuable. A novel single-modality parallel processing network framework based on H\"older divergence and mutual information is introduced. Each modality is independently input into a shared network backbone for parallel processing, preserving unique information. Additionally, a dynamic sharing framework is introduced that adjusts network parameters based on modality availability. A H\"older divergence and mutual information-based loss functions are used for evaluating discrepancies between predictions and labels. Extensive testing on the BraTS 2018 and BraTS 2020 datasets demonstrates that our method outperforms existing techniques in handling missing modalities and validates each component's effectiveness.
- Abstract(参考訳): マルチモーダルMRI(Multimodal Magnetic Resonance Imaging)は、脳腫瘍の亜領域を解析するための重要な補完情報を提供する。
自動セグメンテーションのための4つの一般的なMRIモダリティを用いた手法は成功しているが、画像品質の問題、一貫性のないプロトコル、アレルギー反応、コスト要因などにより、モダリティの欠如に悩まされることが多い。
したがって、欠落したモダリティを扱うセグメンテーションパラダイムの開発は臨床的に有用である。
H\"古い発散と相互情報に基づく新しい単一モード並列処理ネットワークフレームワークを提案する。
各モダリティは、並列処理のための共有ネットワークバックボーンに独立して入力され、ユニークな情報を保持する。
さらに、モダリティの可用性に基づいてネットワークパラメータを調整する動的共有フレームワークも導入された。
予測とラベルの相違性を評価するために、H\"古い発散と相互情報に基づく損失関数を用いる。
BraTS 2018とBraTS 2020データセットの大規模なテストでは、欠落したモダリティを扱う既存のテクニックよりも優れたパフォーマンスを示し、各コンポーネントの有効性を検証する。
関連論文リスト
- Completed Feature Disentanglement Learning for Multimodal MRIs Analysis [36.32164729310868]
特徴不整合(FD)に基づく手法はマルチモーダルラーニング(MML)において大きな成功を収めた
本稿では,特徴デカップリング時に失われた情報を復元する完全特徴分散(CFD)戦略を提案する。
具体的には、CFD戦略は、モダリティ共有とモダリティ固有の特徴を識別するだけでなく、マルチモーダル入力のサブセット間の共有特徴を分離する。
論文 参考訳(メタデータ) (2024-07-06T01:49:38Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
脳腫瘍のセグメンテーションは、特にマルチモーダルMRI(Multi-modal magnetic resonance imaging)における重要な課題である。
本稿では,不完全なモダリティデータから頑健な特徴学習を可能にする,マスク付き予測事前学習方式を提案する。
微調整段階において、我々は知識蒸留技術を用いて、完全なモダリティデータと欠落したモダリティデータの間に特徴を整列させ、同時にモデルロバスト性を向上する。
論文 参考訳(メタデータ) (2024-06-12T20:35:16Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - ACN: Adversarial Co-training Network for Brain Tumor Segmentation with
Missing Modalities [26.394130795896704]
本稿では,この問題を解決するために,新たにACN(Adversarial Co-Training Network)を提案する。
ACNは、相互のドメインを補うために、完全なモダリティと欠落したモダリティの両方に複合的な学習プロセスを可能にする。
提案手法は, 欠落した状況下において, 全ての最先端手法を著しく上回っている。
論文 参考訳(メタデータ) (2021-06-28T11:53:11Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
本稿では,あるモダリティから学習した事前知識を活用し,別のモダリティにおけるセグメンテーション性能を向上させることを目的とする。
モーダル共有知識を徹底的に活用する新しい相互知識蒸留法を提案する。
MMWHS 2017, MMWHS 2017 を用いた多クラス心筋セグメンテーション実験の結果, CT セグメンテーションに大きな改善が得られた。
論文 参考訳(メタデータ) (2020-10-04T10:25:13Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
本論文は,異なるモダリティから異なるパターンと共有パターンをカプセル化することにより,ドメイン間データから堅牢な表現を学習できる新しいモデルの実現を目的とする。
正常な臨床試験で得られたCTおよびMRI肝データに対する試験は、提案したモデルが他のすべてのベースラインを大きなマージンで上回っていることを示している。
論文 参考訳(メタデータ) (2020-06-08T07:35:55Z) - Cross-modality Person re-identification with Shared-Specific Feature
Transfer [112.60513494602337]
クロスモダリティの人物再識別(cm-ReID)は、インテリジェントビデオ分析において難しいが重要な技術である。
モーダリティ共有型特徴伝達アルゴリズム (cm-SSFT) を提案し, モーダリティ共有型情報とモーダリティ固有特性の両方のポテンシャルについて検討する。
論文 参考訳(メタデータ) (2020-02-28T00:18:45Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z) - Modality Compensation Network: Cross-Modal Adaptation for Action
Recognition [77.24983234113957]
異なるモダリティの関係を探索するためのモダリティ補償ネットワーク(MCN)を提案する。
我々のモデルは、適応表現学習を実現するために、モーダリティ適応ブロックによって、ソースおよび補助モーダリティからのデータをブリッジする。
実験の結果,MCNは4つの広く使用されている行動認識ベンチマークにおいて,最先端のアプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-01-31T04:51:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。