SAD-TIME: a Spatiotemporal-fused network for depression detection with Automated multi-scale Depth-wise and TIME-interval-related common feature extractor
- URL: http://arxiv.org/abs/2411.08521v3
- Date: Sat, 28 Dec 2024 09:10:45 GMT
- Title: SAD-TIME: a Spatiotemporal-fused network for depression detection with Automated multi-scale Depth-wise and TIME-interval-related common feature extractor
- Authors: Han-Guang Wang, Hui-Rang Hou, Li-Cheng Jin, Chen-Yang Xu, Zhong-Yi Zhang, Qing-Hao Meng,
- Abstract summary: Depression is a severe mental disorder, and accurate diagnosis is pivotal to the cure and rehabilitation of people with depression.
In search of a more objective means of diagnosis, researchers have begun to experiment with deep learning-based methods for identifying depressive disorders.
- Score: 8.335556993302937
- License:
- Abstract: Background and Objective: Depression is a severe mental disorder, and accurate diagnosis is pivotal to the cure and rehabilitation of people with depression. However, the current questionnaire-based diagnostic methods could bring subjective biases and may be denied by subjects. In search of a more objective means of diagnosis, researchers have begun to experiment with deep learning-based methods for identifying depressive disorders in recent years. Methods: In this study, a novel Spatiotemporal-fused network with Automated multi-scale Depth-wise and TIME-interval-related common feature extractor (SAD-TIME) is proposed. SAD-TIME incorporates an automated nodes' common features extractor (CFE), a spatial sector (SpS), a modified temporal sector (TeS), and a domain adversarial learner (DAL). The CFE includes a multi-scale depth-wise 1D-convolutional neural network and a time-interval embedding generator, where the unique information of each channel is preserved. The SpS fuses the functional connectivity with the distance-based connectivity containing spatial position of EEG electrodes. A multi-head-attention graph convolutional network is also applied in the SpS to fuse the features from different EEG channels. The TeS is based on long short-term memory and graph transformer networks, where the temporal information of different time-windows is fused. Moreover, the DAL is used after the SpS to obtain the domain-invariant feature. Results: Experimental results under tenfold cross-validation show that the proposed SAD-TIME method achieves 92.00% and 94.00% depression classification accuracies on two datasets, respectively, in cross-subject mode. Conclusion: SAD-TIME is a robust depression detection model, where the automatedly-generated features, the SpS and the TeS assist the classification performance with the fusion of the innate spatiotemporal information in the EEG signals.
Related papers
- STIED: A deep learning model for the SpatioTemporal detection of focal Interictal Epileptiform Discharges with MEG [0.08030359871216612]
Magnetoencephalography (MEG) allows the non-invasive detection of interictal epileptiform discharges (IEDs)
Deep learning (DL) could revolutionize clinical MEG practice.
We developed STIED, a powerful yet supervised DL algorithm combining two convolutional neural networks with temporal (1D time-course) and spatial (2D topography) features of MEG signals.
arXiv Detail & Related papers (2024-10-30T18:41:22Z) - STANet: A Novel Spatio-Temporal Aggregation Network for Depression Classification with Small and Unbalanced FMRI Data [12.344849949026989]
We propose the Spatio-Temporal Aggregation Network (STANet) for diagnosing depression by integrating CNN and RNN to capture both temporal and spatial features.
Experiments demonstrate that STANet superior depression diagnostic performance with 82.38% accuracy and a 90.72% AUC.
arXiv Detail & Related papers (2024-07-31T04:06:47Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - A Multi-channel EEG Data Analysis for Poor Neuro-prognostication in
Comatose Patients with Self and Cross-channel Attention Mechanism [1.9288445804756893]
This work investigates the predictive potential of bipolar electroencephalogram (EEG) recordings towards efficient prediction of poor neurological outcomes.
A retrospective design using a hybrid deep learning approach is utilized to optimize an objective function aiming for high specificity.
arXiv Detail & Related papers (2023-09-24T13:13:29Z) - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-Term Sequential
Modelling [54.97005925277638]
The identification of sensory cues associated with potential opportunities and dangers is frequently complicated by unrelated events that separate useful cues by long delays.
It remains a challenging task for state-of-the-art spiking neural networks (SNNs) to establish long-term temporal dependency between distant cues.
We propose a novel biologically inspired Two-Compartment Leaky Integrate-and-Fire spiking neuron model, dubbed TC-LIF.
arXiv Detail & Related papers (2023-08-25T08:54:41Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Diagnostic Spatio-temporal Transformer with Faithful Encoding [54.02712048973161]
This paper addresses the task of anomaly diagnosis when the underlying data generation process has a complex-temporal (ST) dependency.
We formalize the problem as supervised dependency discovery, where the ST dependency is learned as a side product of time-series classification.
We show that temporal positional encoding used in existing ST transformer works has a serious limitation capturing frequencies in higher frequencies (short time scales)
We also propose a new ST dependency discovery framework, which can provide readily consumable diagnostic information in both spatial and temporal directions.
arXiv Detail & Related papers (2023-05-26T05:31:23Z) - MMA-RNN: A Multi-level Multi-task Attention-based Recurrent Neural
Network for Discrimination and Localization of Atrial Fibrillation [1.8037893225125925]
This paper proposes the Multi-level Multi-task Attention-based Recurrent Neural Network for three-class discrimination on patients and localization of the exact timing of AF episodes.
The model is designed as an end-to-end framework to enhance information interaction and reduce error accumulation.
arXiv Detail & Related papers (2023-02-07T19:59:55Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - MHATC: Autism Spectrum Disorder identification utilizing multi-head
attention encoder along with temporal consolidation modules [11.344829880346353]
Resting-state fMRI is commonly used for diagnosing Autism Spectrum Disorder (ASD) by using network-based functional connectivity.
We propose a novel deep learning architecture (MHATC) consisting of multi-head attention and temporal consolidation modules for classifying an individual as a patient of ASD.
arXiv Detail & Related papers (2021-12-27T07:50:16Z) - AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching [76.4844593082362]
We investigate the reason why existing end-to-end networks perform poorly in challenging conditions and establish a strong baseline for remote HR measurement with architecture search (NAS)
Comprehensive experiments are performed on three benchmark datasets on both intra-temporal and cross-dataset testing.
arXiv Detail & Related papers (2020-04-26T05:43:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.