論文の概要: XiYan-SQL: A Multi-Generator Ensemble Framework for Text-to-SQL
- arxiv url: http://arxiv.org/abs/2411.08599v1
- Date: Wed, 13 Nov 2024 13:30:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:12:05.032304
- Title: XiYan-SQL: A Multi-Generator Ensemble Framework for Text-to-SQL
- Title(参考訳): XiYan-SQL: テキスト・トゥ・SQLのためのマルチジェネレータ・アンサンブル・フレームワーク
- Authors: Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, Yu Li,
- Abstract要約: XiYanは、マルチコンテキストアンサンブル戦略を用いて、候補生成を改善する革新的なフレームワークである。
また,データベース構造を理解するための半構造化表現手法であるM-スキーマを導入する。
全体として、提案したXiYan-the-artフレームワークは、スパイダーテストセットで89.65%の最先端実行精度を実現する。
- 参考スコア(独自算出の注目度): 20.010431872384714
- License:
- Abstract: To tackle the challenges of large language model performance in natural language to SQL tasks, we introduce XiYan-SQL, an innovative framework that employs a multi-generator ensemble strategy to improve candidate generation. We introduce M-Schema, a semi-structured schema representation method designed to enhance the understanding of database structures. To enhance the quality and diversity of generated candidate SQL queries, XiYan-SQL integrates the significant potential of in-context learning (ICL) with the precise control of supervised fine-tuning. On one hand, we propose a series of training strategies to fine-tune models to generate high-quality candidates with diverse preferences. On the other hand, we implement the ICL approach with an example selection method based on named entity recognition to prevent overemphasis on entities. The refiner optimizes each candidate by correcting logical or syntactical errors. To address the challenge of identifying the best candidate, we fine-tune a selection model to distinguish nuances of candidate SQL queries. The experimental results on multiple dialect datasets demonstrate the robustness of XiYan-SQL in addressing challenges across different scenarios. Overall, our proposed XiYan-SQL achieves the state-of-the-art execution accuracy of 89.65% on the Spider test set, 69.86% on SQL-Eval, 41.20% on NL2GQL, and a competitive score of 72.23% on the Bird development benchmark. The proposed framework not only enhances the quality and diversity of SQL queries but also outperforms previous methods.
- Abstract(参考訳): 自然言語からSQLタスクへの大規模言語モデルパフォーマンスの課題に対処するため、候補生成を改善するためにマルチジェネレータアンサンブル戦略を利用する革新的なフレームワークであるXiYan-SQLを紹介した。
M-Schemaは、データベース構造を理解するための半構造化スキーマ表現法である。
生成した候補SQLクエリの品質と多様性を高めるため、XiYan-SQLは、コンテキスト内学習(ICL)の重要な可能性と、教師付き微調整の正確な制御を統合する。
そこで本研究では,様々な選好を持つ高品質な候補を生成するための,微調整モデルのための一連のトレーニング戦略を提案する。
一方、名前付きエンティティ認識に基づく実例選択手法を用いてICL手法を実装し、エンティティの過剰エンハンシスを防止する。
精製器は論理的または構文的誤りを補正することで各候補を最適化する。
最適な候補を特定するという課題に対処するため、候補SQLクエリのニュアンスを識別するために選択モデルを微調整する。
複数の方言データセットの実験結果は、さまざまなシナリオにまたがる課題に対処する上で、XiYan-SQLの堅牢性を示している。
全体として、提案したXiYan-SQLは、スパイダーテストセットで89.65%、SQL-Evalで69.86%、NL2GQLで41.20%、Bird開発ベンチマークで72.23%の競合スコアを達成した。
提案されたフレームワークは、SQLクエリの品質と多様性を高めるだけでなく、以前のメソッドよりも優れています。
関連論文リスト
- CHASE-SQL: Multi-Path Reasoning and Preference Optimized Candidate Selection in Text-to-SQL [9.47170756607886]
CHASE-は、マルチエージェントモデリングにおけるテスト時間計算を用いて、候補生成と選択を改善する革新的な戦略を利用する新しいフレームワークである。
最適な候補を特定するために、選別エージェントを用いて、微調整された二項候補選択LLMとのペア比較により候補をランク付けする。
提案したCHASE-は、BIRD Text-to- datasetベンチマークのテストセットと開発セットにおいて、73.0%と73.01%の最先端実行精度を実現している。
論文 参考訳(メタデータ) (2024-10-02T18:41:35Z) - Enhancing LLM Fine-tuning for Text-to-SQLs by SQL Quality Measurement [1.392448435105643]
Text-to-sにより、専門家でないユーザは、自然言語クエリを使用してデータベースから要求された情報を取得することができる。
GPT4やT5のような現在の最先端(SOTA)モデルは、BIRDのような大規模ベンチマークで素晴らしいパフォーマンスを示している。
本稿では,テキスト・ツー・ス・パフォーマンスを向上させるためにSQL Qualityのみを必要とする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T17:21:51Z) - CHESS: Contextual Harnessing for Efficient SQL Synthesis [1.9506402593665235]
我々は,関連するデータとコンテキストを検索し,効率的なスキーマを選択し,正確で効率的なクエリを合成する新しいパイプラインを提案する。
提案手法は,BIRDデータセットの領域横断における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-05-27T01:54:16Z) - MCS-SQL: Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL Generation [10.726734105960924]
大規模言語モデル(LLM)は、テキストからタスクへの微調整アプローチを大幅に上回る、ICL(In-context Learning)ベースの手法を実現している。
本研究は,LLMのプロンプトに対する感受性を考察し,複数のプロンプトを活用してより広い探索空間を探索する手法を提案する。
生成したクエリの精度と効率の両面から,BIRD上に新たなSOTA性能を確立する。
論文 参考訳(メタデータ) (2024-05-13T04:59:32Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
Prompt"は、Text-to-LLMのいくつかのショットプロンプト機能を改善するように設計されている。
Prompt"は、ラベル付きデータが少なく、テキスト内学習における従来のアプローチよりも大きなマージンで優れている。
emphPromptはテキスト内学習における従来の手法よりも優れており,ラベル付きデータはほとんどない。
論文 参考訳(メタデータ) (2023-11-06T05:24:06Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z) - XRICL: Cross-lingual Retrieval-Augmented In-Context Learning for
Cross-lingual Text-to-SQL Semantic Parsing [70.40401197026925]
大規模言語モデルを用いたインコンテキスト学習は、最近セマンティック解析タスクの驚くべき結果を示している。
この研究は、あるクエリに対して関連する英語の例を検索する学習を行うXRICLフレームワークを導入している。
また、大規模言語モデルの翻訳プロセスを容易にするために、対象言語に対するグローバルな翻訳例も含んでいる。
論文 参考訳(メタデータ) (2022-10-25T01:33:49Z) - SUN: Exploring Intrinsic Uncertainties in Text-to-SQL Parsers [61.48159785138462]
本稿では,ニューラルネットワークに基づくアプローチ(SUN)における本質的な不確かさを探索することにより,テキストから依存への変換性能を向上させることを目的とする。
5つのベンチマークデータセットの大規模な実験により、我々の手法は競合より大幅に優れ、新しい最先端の結果が得られた。
論文 参考訳(メタデータ) (2022-09-14T06:27:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。