論文の概要: Process-aware Human Activity Recognition
- arxiv url: http://arxiv.org/abs/2411.08814v1
- Date: Wed, 13 Nov 2024 17:53:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:09:12.541633
- Title: Process-aware Human Activity Recognition
- Title(参考訳): プロセス認識型ヒューマンアクティビティ認識
- Authors: Jiawei Zheng, Petros Papapanagiotou, Jacques D. Fleuriot, Jane Hillston,
- Abstract要約: 本稿では,HARの性能向上のために,コンテキストからのプロセス情報を組み込んだ新しい手法を提案する。
具体的には、機械学習モデルによって生成された確率的事象と、文脈情報から導出されるプロセスモデルとを一致させる。
このアライメントは、これらの2つの情報源を適応的に重み付けし、HARの精度を最適化する。
- 参考スコア(独自算出の注目度): 1.912429179274357
- License:
- Abstract: Humans naturally follow distinct patterns when conducting their daily activities, which are driven by established practices and processes, such as production workflows, social norms and daily routines. Human activity recognition (HAR) algorithms usually use neural networks or machine learning techniques to analyse inherent relationships within the data. However, these approaches often overlook the contextual information in which the data are generated, potentially limiting their effectiveness. We propose a novel approach that incorporates process information from context to enhance the HAR performance. Specifically, we align probabilistic events generated by machine learning models with process models derived from contextual information. This alignment adaptively weighs these two sources of information to optimise HAR accuracy. Our experiments demonstrate that our approach achieves better accuracy and Macro F1-score compared to baseline models.
- Abstract(参考訳): 人間は、生産ワークフロー、社会規範、日々のルーチンなど、確立したプラクティスやプロセスによって駆動される日々の活動を行う際に、自然に異なるパターンに従う。
ヒューマンアクティビティ認識(HAR)アルゴリズムは通常、ニューラルネットワークまたは機械学習技術を使用して、データ内の固有の関係を分析する。
しかしながら、これらのアプローチは、データが生成されるコンテキスト情報を見落とし、その有効性を制限する可能性がある。
本稿では,HARの性能向上のために,コンテキストからのプロセス情報を組み込んだ新しい手法を提案する。
具体的には、機械学習モデルによって生成された確率的事象と、文脈情報から導出されるプロセスモデルとを一致させる。
このアライメントは、これらの2つの情報源を適応的に重み付けし、HARの精度を最適化する。
実験により,本手法はベースラインモデルと比較して精度が向上し,マクロF1スコアが向上することが示された。
関連論文リスト
- Interpretable Data Fusion for Distributed Learning: A Representative Approach via Gradient Matching [19.193379036629167]
本稿では,複数の生データポイントを仮想表現に変換する分散学習のための代表的アプローチを提案する。
これにより、広範囲なデータセットを消化可能なフォーマットに凝縮し、直感的な人間と機械の相互作用を促進する。
論文 参考訳(メタデータ) (2024-05-06T18:21:41Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - randomHAR: Improving Ensemble Deep Learners for Human Activity
Recognition with Sensor Selection and Reinforcement Learning [4.5830802802139585]
randomHARの基本的な考え方は、ランダムに選択されたセンサーデータに基づいて、同じアーキテクチャで一連のディープラーニングモデルをトレーニングすることだ。
既存の作業とは対照的に、このアプローチは構成モデルのアーキテクチャよりもアンサンブルプロセスを最適化する。
実験により,提案手法は最先端手法であるアンサンブルLSTMよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-15T10:51:03Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Reinforcement Learning from Passive Data via Latent Intentions [86.4969514480008]
我々は、下流RLを加速する機能を学ぶために、受動的データが引き続き使用できることを示す。
我々のアプローチは、意図をモデル化することで受動的データから学習する。
実験では、クロス・エボディメント・ビデオデータやYouTubeビデオなど、さまざまな形式の受動的データから学習できることを実証した。
論文 参考訳(メタデータ) (2023-04-10T17:59:05Z) - Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data
Programming [77.38174112525168]
私たちは、WS 学習パイプラインの全体的な生産性を、一般的な WS 監督アプローチと比較して平均20%(最大 47% のタスク)改善する、エンドツーエンドのインタラクティブなスーパービジョンシステムである Nemo を紹介します。
論文 参考訳(メタデータ) (2022-03-02T19:57:32Z) - BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines [49.75878234192369]
We present WEAVER, a simple, yet efficient post-processing method that infuse old knowledge into the new model。
WEAVERを逐次的に適用すると、同じ単語の埋め込み分布が、一度にすべてのデータに対する総合的なトレーニングとして得られることを示す。
論文 参考訳(メタデータ) (2022-02-21T10:34:41Z) - Human Activity Recognition using Attribute-Based Neural Networks and
Context Information [61.67246055629366]
手作業におけるウェアラブルセンサデータから人間の活動認識(HAR)を考察する。
我々は、コンテキスト情報をディープニューラルネットワークベースのHARシステムに体系的に組み込む方法を示す。
提案したアーキテクチャは,最先端手法と比較してHAR性能が向上することを示す。
論文 参考訳(メタデータ) (2021-10-28T06:08:25Z) - B-HAR: an open-source baseline framework for in depth study of human
activity recognition datasets and workflows [1.7639472693362923]
本稿では,ベースラインフレームワークの定義,標準化,開発のためのオープンソースフレームワークであるB-HARを提案する。
データ準備のための最も一般的なデータ処理方法と、最も一般的な機械学習およびディープラーニングパターン認識モデルを実装している。
論文 参考訳(メタデータ) (2021-01-23T12:42:41Z) - Probabilistic Active Meta-Learning [15.432006404678981]
先行経験に基づくタスク選択をメタ学習アルゴリズムに導入する。
シミュレーションロボット実験の強いベースラインと比較して,本手法がデータ効率を向上させるという実証的証拠を提供する。
論文 参考訳(メタデータ) (2020-07-17T12:51:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。