A Classical Analogue of Entanglement for a Kicked Top
- URL: http://arxiv.org/abs/2411.08857v1
- Date: Wed, 13 Nov 2024 18:38:12 GMT
- Title: A Classical Analogue of Entanglement for a Kicked Top
- Authors: Bilal Khalid, Sabre Kais,
- Abstract summary: The kicked top is one of the most extensively studied paradigms of quantum chaos.
This paper argues that from an alternative standpoint on classical physics, this connection becomes completely natural.
Looking at the kicked top from this paradigm of classical physics provides a completely fresh outlook to the chaos-entanglement discussion.
- Score: 0.0
- License:
- Abstract: The kicked top is one of the most extensively studied paradigms of quantum chaos. In this model, an intricate connection has been observed between entanglement entropy and classical dynamics. This connection appears surprising since both chaos and entanglement are understood to be exclusive to classical and quantum mechanics respectively. In this paper, we have argued that from an alternative standpoint on classical physics, this connection becomes completely natural. According to this view, classical states are more accurately represented by distributions instead of infinitely precise points in phase space. Many properties that have traditionally been held to be exclusively quantum, such as non-separability of states, appear in classical physics too in this picture. Looking at the kicked top from this paradigm of classical physics provides a completely fresh outlook to the chaos-entanglement discussion. This finding opens new avenues of understanding in quantum chaos and the more general problem of classical-quantum correspondence.
Related papers
- From integrability to chaos: the quantum-classical correspondence in a triple well bosonic model [0.0]
We investigate the semiclassical limit of a bosonic quantum many-body system exhibiting both integrable and chaotic behavior.
The transition from regularity to chaos in classical dynamics is visualized through Poincar'e sections.
The study systematically establishes quantum-classical correspondence for a bosonic many-body system with more than two wells.
arXiv Detail & Related papers (2023-11-22T06:31:00Z) - Probing quantum chaos with the entropy of decoherent histories [0.0]
Quantum chaos, a phenomenon that began to be studied in the last century, still does not have a rigorous understanding.
We propose the quantum chaos definition in the manner similar to the classical one using decoherent histories as a quantum analogue of trajectories.
We show that for such a model, the production of entropy of decoherent histories is radically different in integrable and chaotic regimes.
arXiv Detail & Related papers (2023-07-17T21:57:05Z) - Learning in quantum games [41.67943127631515]
We show that the induced quantum state dynamics decompose into (i) a classical, commutative component which governs the dynamics of the system's eigenvalues.
We find that the FTQL dynamics incur no more than constant regret in all quantum games.
arXiv Detail & Related papers (2023-02-05T08:23:04Z) - Visualized Wave Mechanics by Coupled Macroscopic Pendula: Classical
Analogue to Driven Quantum Bits [0.0]
We show that it is possible to reconstruct the coherent dynamics of a quantum bit (qubit) using a classical model system.
As a proof of principle, we demonstrate full control of our one-to-one analogue to a qubit by realizing Rabi oscillations, Landau-Zener transitions and Landau-Zener-St"uckelberg-Majorana interferometry.
arXiv Detail & Related papers (2022-07-19T14:29:29Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - The role of fluctuations in quantum and classical time crystals [58.720142291102135]
We study the role of fluctuations on the stability of the system and find no distinction between quantum and classical DTCs.
This allows us to probe the fluctuations in an experiment using two strongly coupled parametric resonators subject to classical noise.
arXiv Detail & Related papers (2022-03-10T19:00:01Z) - Classical Evolution Without Evolution [0.0]
I show how the same argument can be made in classical physics, by using a formalism that closely resembles the quantum one.
The key to obtaining dynamics without dynamics is the principle of energy conservation.
arXiv Detail & Related papers (2022-03-06T22:40:16Z) - Entanglement of Classical and Quantum Short-Range Dynamics in Mean-Field
Systems [0.0]
We show the emergence of classical dynamics for very general quantum lattice systems with mean-field interactions.
This leads to a theoretical framework in which the classical and quantum worlds are entangled.
arXiv Detail & Related papers (2021-03-11T15:23:59Z) - There is only one time [110.83289076967895]
We draw a picture of physical systems that allows us to recognize what is this thing called "time"
We derive the Schr"odinger equation in the first case, and the Hamilton equations of motion in the second one.
arXiv Detail & Related papers (2020-06-22T09:54:46Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.