DG-PPU: Dynamical Graphs based Post-processing of Point Clouds extracted from Knee Ultrasounds
- URL: http://arxiv.org/abs/2411.08926v1
- Date: Tue, 12 Nov 2024 14:04:42 GMT
- Title: DG-PPU: Dynamical Graphs based Post-processing of Point Clouds extracted from Knee Ultrasounds
- Authors: Injune Hwang, Karthik Saravanan, Caterina V Coralli, S Jack Tu, Sthephen J Mellon,
- Abstract summary: Patients undergoing total knee anterior (TKA) often experience non-specific knee pain, arising from abnormal patellofemoral joint (PFJ) instability.
Tracking PFJ motion is challenging since static imaging modalities like CT and MRI are limited by field of view and metal artefact interference.
We aim to achieve accurate visualisation of patellar tracking and PFJ motion, using 3D registration of point clouds extracted from ultrasound scans.
- Score: 0.6790764754753309
- License:
- Abstract: Patients undergoing total knee arthroplasty (TKA) often experience non-specific anterior knee pain, arising from abnormal patellofemoral joint (PFJ) instability. Tracking PFJ motion is challenging since static imaging modalities like CT and MRI are limited by field of view and metal artefact interference. Ultrasounds offer an alternative modality for dynamic musculoskeletal imaging. We aim to achieve accurate visualisation of patellar tracking and PFJ motion, using 3D registration of point clouds extracted from ultrasound scans across different angles of joint flexion. Ultrasound images containing soft tissue are often mislabeled as bone during segmentation, resulting in noisy 3D point clouds that hinder accurate registration of the bony joint anatomy. Machine learning the intrinsic geometry of the knee bone may help us eliminate these false positives. As the intrinsic geometry of the knee does not change during PFJ motion, one may expect this to be robust across multiple angles of joint flexion. Our dynamical graphs-based post-processing algorithm (DG-PPU) is able to achieve this, creating smoother point clouds that accurately represent bony knee anatomy across different angles. After inverting these point clouds back to their original ultrasound images, we evaluated that DG-PPU outperformed manual data cleaning done by our lab technician, deleting false positives and noise with 98.2% precision across three different angles of joint flexion. DG-PPU is the first algorithm to automate the post-processing of 3D point clouds extracted from ultrasound scans. With DG-PPU, we contribute towards the development of a novel patellar mal-tracking assessment system with ultrasound, which currently does not exist.
Related papers
- Class-Aware Cartilage Segmentation for Autonomous US-CT Registration in Robotic Intercostal Ultrasound Imaging [39.597735935731386]
A class-aware cartilage bone segmentation network with geometry-constraint post-processing is presented to capture patient-specific rib skeletons.
A dense skeleton graph-based non-rigid registration is presented to map the intercostal scanning path from a generic template to individual patients.
Results demonstrate that the proposed graph-based registration method can robustly and precisely map the path from CT template to individual patients.
arXiv Detail & Related papers (2024-06-06T14:15:15Z) - 3D Freehand Ultrasound using Visual Inertial and Deep Inertial Odometry for Measuring Patellar Tracking [4.252549987351643]
Patellofemoral joint (PFJ) issues affect one in four people, with 20% experiencing chronic knee pain despite treatment.
Traditional imaging methods like CT and MRI face challenges, including cost and metal artefacts.
A new system to monitor joint motion could significantly improve understanding of PFJ dynamics.
arXiv Detail & Related papers (2024-04-24T12:52:43Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Feature-aggregated spatiotemporal spine surface estimation for wearable
patch ultrasound volumetric imaging [4.287216236596808]
We propose to use a patch-like wearable ultrasound solution to capture the reflective bone surfaces from multiple imaging angles.
Our wearable ultrasound system can potentially provide intuitive and accurate interventional guidance for clinicians in augmented reality setting.
arXiv Detail & Related papers (2022-11-11T02:15:48Z) - Orientation-guided Graph Convolutional Network for Bone Surface
Segmentation [51.51690515362261]
We propose an orientation-guided graph convolutional network to improve connectivity while segmenting the bone surface.
Our approach improves over the state-of-the-art methods by 5.01% in connectivity metric.
arXiv Detail & Related papers (2022-06-16T23:01:29Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z) - Bone Feature Segmentation in Ultrasound Spine Image with Robustness to
Speckle and Regular Occlusion Noise [11.11171761130519]
3D ultrasound imaging shows great promise for scoliosis diagnosis thanks to its low-costing, radiation-free and real-time characteristics.
The key to accessing scoliosis by ultrasound imaging is to accurately segment the bone area and measure the scoliosis degree based on the symmetry of the bone features.
In this paper, we propose a robust bone feature segmentation method based on the U-net structure for ultrasound spine Volume Projection Imaging (VPI) images.
arXiv Detail & Related papers (2020-10-08T02:44:39Z) - Inertial Measurements for Motion Compensation in Weight-bearing
Cone-beam CT of the Knee [6.7461735822055715]
Involuntary motion during CT scans of the knee causes artifacts in the reconstructed volumes making them unusable for clinical diagnosis.
We propose to attach an inertial measurement unit (IMU) to the leg of the subject in order to measure the motion during the scan and correct for it.
arXiv Detail & Related papers (2020-07-09T09:26:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.