Classification of Keratitis from Eye Corneal Photographs using Deep Learning
- URL: http://arxiv.org/abs/2411.08935v1
- Date: Wed, 13 Nov 2024 10:58:39 GMT
- Title: Classification of Keratitis from Eye Corneal Photographs using Deep Learning
- Authors: Maria Miguel Beirão, João Matos, Tiago Gonçalves, Camila Kase, Luis Filipe Nakayama, Denise de Freitas, Jaime S. Cardoso,
- Abstract summary: Keratitis is an inflammatory corneal condition responsible for 10% of visual impairment in low- and middle-income countries (LMICs)
In this study, we investigate and compare different deep learning approaches to diagnose the source of infection.
We achieved the best results with Multitask V2, with an area under the receiver operating characteristic curve (AUROC) confidence intervals of 0.7413-0.7740 (bacteria), 0.8395-0.8725 (fungi), and 0.9448-0.9616 (amoeba)
- Score: 2.5633724723473352
- License:
- Abstract: Keratitis is an inflammatory corneal condition responsible for 10% of visual impairment in low- and middle-income countries (LMICs), with bacteria, fungi, or amoeba as the most common infection etiologies. While an accurate and timely diagnosis is crucial for the selected treatment and the patients' sight outcomes, due to the high cost and limited availability of laboratory diagnostics in LMICs, diagnosis is often made by clinical observation alone, despite its lower accuracy. In this study, we investigate and compare different deep learning approaches to diagnose the source of infection: 1) three separate binary models for infection type predictions; 2) a multitask model with a shared backbone and three parallel classification layers (Multitask V1); and, 3) a multitask model with a shared backbone and a multi-head classification layer (Multitask V2). We used a private Brazilian cornea dataset to conduct the empirical evaluation. We achieved the best results with Multitask V2, with an area under the receiver operating characteristic curve (AUROC) confidence intervals of 0.7413-0.7740 (bacteria), 0.8395-0.8725 (fungi), and 0.9448-0.9616 (amoeba). A statistical analysis of the impact of patient features on models' performance revealed that sex significantly affects amoeba infection prediction, and age seems to affect fungi and bacteria predictions.
Related papers
- A Hybrid Feature Fusion Deep Learning Framework for Leukemia Cancer Detection in Microscopic Blood Sample Using Gated Recurrent Unit and Uncertainty Quantification [1.024113475677323]
Leukemia is diagnosed by analyzing blood and bone marrow smears under a microscope, with additional cytochemical tests for confirmation.
Deep learning has provided advanced methods for classifying microscopic smear images, aiding in the detection of leukemic cells.
In this research, hybrid deep learning models were implemented to classify Acute lymphoblastic leukemia (ALL)
The proposed method achieved a remarkable detection accuracy rate of 100% on the ALL-IDB1 dataset, 98.07% on the ALL-IDB2 dataset, and 98.64% on the combined dataset.
arXiv Detail & Related papers (2024-10-18T15:23:34Z) - Adaptive Multiscale Retinal Diagnosis: A Hybrid Trio-Model Approach for Comprehensive Fundus Multi-Disease Detection Leveraging Transfer Learning and Siamese Networks [0.0]
WHO has declared that more than 2.2 billion people worldwide are suffering from visual disorders, such as media haze, glaucoma, and drusen.
At least 1 billion of these cases could have been either prevented or successfully treated, yet they remain unaddressed due to poverty, a lack of specialists, inaccurate ocular fundus diagnoses by ophthalmologists, or the presence of a rare disease.
To address this, the research has developed the Hybrid Trio-Network Model Algorithm for accurately diagnosing 12 distinct common and rare eye diseases.
arXiv Detail & Related papers (2024-05-28T03:06:10Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - What limits performance of weakly supervised deep learning for chest CT
classification? [0.44241702149260353]
Weakly supervised learning with noisy data has drawn attention in the medical imaging community due to the sparsity of high-quality disease labels.
In this paper, we test the effects of such weak supervision by examining model tolerance for noisy data.
Results demonstrated that the model could endure up to 10% added label error before experiencing a decline in disease classification performance.
arXiv Detail & Related papers (2024-02-06T21:38:29Z) - Interpretable histopathology-based prediction of disease relevant
features in Inflammatory Bowel Disease biopsies using weakly-supervised deep
learning [0.8521205677945196]
Crohn's Disease (CD) and Ulcerative Colitis (UC) are the two main Inflammatory Bowel Disease (IBD) types.
We developed deep learning models to identify histological disease features for both CD and UC using only endoscopic labels.
arXiv Detail & Related papers (2023-03-20T15:59:29Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
Deep learning (DL) classification models were trained to identify COVID-19-positive patients on 3D computed tomography (CT) datasets from different countries.
We trained nine identical DL-based classification models by using combinations of the datasets with a 72% train, 8% validation, and 20% test data split.
The models trained on multiple datasets and evaluated on a test set from one of the datasets used for training performed better.
arXiv Detail & Related papers (2021-02-18T21:14:52Z) - Uncertainty-driven ensembles of deep architectures for multiclass
classification. Application to COVID-19 diagnosis in chest X-ray images [8.103053617559748]
Recent COVID-19 pandemic has demonstrated the need of developing systems to automatize the diagnosis of pneumonia.
CNNs have proved to be an excellent option for the automatic classification of medical images.
We propose a multi-level ensemble classification system based on a Bayesian Deep Learning approach.
arXiv Detail & Related papers (2020-11-27T14:06:25Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.