論文の概要: Fault-tolerant fermionic quantum computing
- arxiv url: http://arxiv.org/abs/2411.08955v2
- Date: Wed, 16 Jul 2025 17:58:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.003598
- Title: Fault-tolerant fermionic quantum computing
- Title(参考訳): フォールトトレラントフェルミオン量子コンピューティング
- Authors: Alexander Schuckert, Eleanor Crane, Alexey V. Gorshkov, Mohammad Hafezi, Michael J. Gullans,
- Abstract要約: 我々は、このオーバーヘッドを完全に除去するフレームワークであるフェルミオン型フォールトトレラント量子コンピューティングを導入する。
我々は、我々のフレームワークを中性原子でどのように実装できるかを示し、非数保存ゲートを実装するために中性原子が明らかに不可能であることを克服する。
- 参考スコア(独自算出の注目度): 39.58317527488534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulating the dynamics of electrons and other fermionic particles in quantum chemistry, materials science, and high-energy physics is one of the most promising applications of fault-tolerant quantum computers. However, the overhead in mapping time evolution under fermionic Hamiltonians to qubit gates renders this endeavor challenging. We introduce fermionic fault-tolerant quantum computing, a framework which removes this overhead altogether. Using native fermionic operations we first construct a repetition code which corrects phase errors only. Within a fermionic color code, which corrects for both phase and loss errors, we then realize a universal fermionic gate set, including transversal fermionic Clifford gates. Interfacing with qubit color codes we introduce qubit-fermion fault-tolerant computation, which allows for qubit-controlled fermionic time evolution, a crucial subroutine in state-of-the-art quantum algorithms. As an application, we consider simulating crystalline materials, finding an exponential improvement in circuit depth for a single time step from $\mathcal{O}(N)$ to $\mathcal{O}(\log(N))$ with respect to lattice site number $N$ while retaining a site count of $\tilde{\mathcal{O}}(N)$, implying a linear-in-$N$ end-to-end gate depth for simulating materials, as opposed to quadratic in previous approaches. We also introduce a fermion-inspired qubit algorithm with $O(\mathrm{log}(N)$ depth, but a prohibitive number of additional ancilla qubits. We show how our framework can be implemented in neutral atoms, overcoming the apparent inability of neutral atoms to implement non-number-conserving gates. Our work opens the door to fermion-qubit fault-tolerant quantum computation in platforms with native fermions such as neutral atoms, quantum dots and donors in silicon, with applications in quantum chemistry, material science, and high-energy physics.
- Abstract(参考訳): 量子化学、材料科学、高エネルギー物理学における電子やその他のフェルミオン粒子の力学をシミュレーションすることは、フォールトトレラント量子コンピュータの最も有望な応用の1つである。
しかし、フェルミオンハミルトニアンの下での時間発展のオーバーヘッドは、この試みを困難にしている。
我々は、このオーバーヘッドを完全に除去するフレームワークであるフェルミオン型フォールトトレラント量子コンピューティングを導入する。
ネイティブのフェルミオン演算を用いて、フェーズエラーのみを修正する反復コードを構築する。
位相誤差と損失誤差の両方を補正するフェルミオンカラーコード内には, 転位フェルミオンクリフォードゲートを含む普遍的なフェルミオンゲートセットが実現される。
量子ビットカラーコードと対向して、量子ビット制御されたフェルミオン時間進化を可能にする量子ビットフェミオンフォールトトレラント計算を導入し、最先端の量子アルゴリズムにおいて重要なサブルーチンとなる。
応用として, 結晶材料を模擬し, 単一時間ステップにおける回路深さの指数関数的改善を$\mathcal{O}(N)$から$\mathcal{O}(\log(N))$に対して, 格子サイト数$N$に対して$\tilde{\mathcal{O}}(N)$で表す。
また,$O(\mathrm{log}(N)$ depthのフェルミオンにインスパイアされた量子ビットアルゴリズムも導入する。
我々は、我々のフレームワークを中性原子でどのように実装できるかを示し、非数保存ゲートを実装するために中性原子が明らかに不可能であることを克服する。
我々の研究は、中性原子、量子ドット、シリコンのドナーといったネイティブフェルミオンを持つプラットフォームにおけるフェルミオン量子ビットのフォールトトレラント量子計算への扉を開き、量子化学、物質科学、高エネルギー物理学に応用する。
関連論文リスト
- Hyperfine Coupling Constants on Quantum Computers: Performance, Errors, and Future Prospects [0.0]
本稿では,電子スピン共鳴等方性超微細結合定数(HFC)の量子ハードウェア上での最初の実装と計算について述べる。
実験例ではヒドロキシルラジカル(OH$bullet$)、一酸化窒素(NO$bullet$)、三重項ヒドロキシルカチオン(OH$+$)のHFCを計算する。
論文 参考訳(メタデータ) (2025-03-12T10:02:08Z) - Error-corrected fermionic quantum processors with neutral atoms [0.0]
多体フェルミオン系はフェルミオン量子プロセッサを用いてハードウェア効率よくシミュレートできる。
本稿では,現在の実験機能を用いて実装可能な誤り訂正型フェルミオン量子コンピュータの青写真について述べる。
論文 参考訳(メタデータ) (2024-12-20T17:25:46Z) - Solving Free Fermion Problems on a Quantum Computer [0.0]
指数関数的に改善されたポリログ$(N)$コストで量子アルゴリズムによって解くことができる、相互作用しないフェルミオン問題をいくつか提示する。
シミュレーションアルゴリズムは,自由なボソンシステムを含む他の有望な対象に一般化可能であることを示す。
論文 参考訳(メタデータ) (2024-09-06T18:25:03Z) - A recipe for local simulation of strongly-correlated fermionic matter on quantum computers: the 2D Fermi-Hubbard model [0.0]
本稿では,局所演算のみを用いて量子コンピュータ上での2次元Fermi-Hubbardモデルをシミュレーションするためのステップバイステップのレシピを提案する。
物理デバイスへの埋め込みを含むエンド・ツー・エンド・シミュレーションの詳細なレシピを提供する。
論文 参考訳(メタデータ) (2024-08-26T18:00:07Z) - Encoded probabilistic imaginary-time evolution on a trapped-ion quantum computer for ground and excited states of spin qubits [0.0]
量子コンピュータを用いて、ダイヤモンドと窒化アルミニウムのスピン欠陥に対する低エネルギー有効ハミルトニアンを解く。
スピン一重項状態は密度汎関数理論(DFT)を用いて計算することは困難であり、これは複数のスレーター行列式によって記述されるべきである。
これは、符号化されたPITE回路が捕捉されたイオン量子コンピュータ上で実行される最初の例である。
論文 参考訳(メタデータ) (2024-07-15T09:07:54Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Computation and Simulation using Fermion-Pair Registers [0.0]
量子ガス顕微鏡下でのフェルミオン粒子を用いた量子計算とシミュレーションを実現する手法を提案し,解析する。
SWAPゲートと高忠実度制御相ゲートを設計する方法について述べる。
横場と縦場を持つ2次元量子イジング・ハミルトニアンは、フェシュバッハ相互作用強度を変調することにより、効率的にシミュレートできることを示す。
論文 参考訳(メタデータ) (2023-06-06T17:59:08Z) - Blueprint of a Molecular Spin Quantum Processor [0.0]
本稿では,単一分子ナノマグネットからなる分子スピン量子プロセッサの青写真について述べる。
このようなプラットフォームに普遍的なゲートセットの実装方法を示し、最終的なqudit状態を読み出す方法を示す。
論文 参考訳(メタデータ) (2023-05-02T18:00:06Z) - Fermionic quantum processing with programmable neutral atom arrays [0.539215791790606]
多体フェルミオン系の特性をシミュレーションすることは、物質科学、量子化学、粒子物理学に関連する卓越した計算課題である。
本稿では、フェルミオンモデルがフェルミオンレジスタに符号化され、フェルミオンゲートを用いてハードウェア効率よくシミュレートされるフェルミオン量子プロセッサを提案する。
論文 参考訳(メタデータ) (2023-03-13T10:35:48Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
モルマー・ソレンセンエンタングゲートの誤校正パラメータの系統的摂動展開について検討した。
我々はゲート進化演算子を計算し、関連する鍵特性を得る。
我々は、捕捉されたイオン量子プロセッサにおける測定値に対して、モデルからの予測をベンチマークすることで検証する。
論文 参考訳(メタデータ) (2021-12-10T10:56:16Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Quantum Register of Fermion Pairs [0.0]
超低温フェルミオン原子に基づく量子シミュレータは、パラダイム的フェルミ系を直接実現する。
フェルミオンモデルの量子計算はフェルミオン反対称性の実装において大きな課題に直面している。
光学格子に閉じ込められた数百個のフェルミオン原子対からなる頑健な量子レジスタを実証する。
論文 参考訳(メタデータ) (2021-03-25T17:30:37Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。