論文の概要: Non-Euclidean High-Order Smooth Convex Optimization
- arxiv url: http://arxiv.org/abs/2411.08987v1
- Date: Wed, 13 Nov 2024 19:22:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:24:53.593782
- Title: Non-Euclidean High-Order Smooth Convex Optimization
- Title(参考訳): 非ユークリッド高次平滑凸最適化
- Authors: Juan Pablo Contreras, Cristóbal Guzmán, David Martínez-Rubio,
- Abstract要約: 我々は、H"より古い連続$q$-th微分を持つ凸対象の最適化のためのアルゴリズムを、p$-normに対して開発する。
他の構造化関数も最適化できる。
- 参考スコア(独自算出の注目度): 9.940728137241214
- License:
- Abstract: We develop algorithms for the optimization of convex objectives that have H\"older continuous $q$-th derivatives with respect to a $p$-norm by using a $q$-th order oracle, for $p, q \geq 1$. We can also optimize other structured functions. We do this by developing a non-Euclidean inexact accelerated proximal point method that makes use of an inexact uniformly convex regularizer. We also provide nearly matching lower bounds for any deterministic algorithm that interacts with the function via a local oracle.
- Abstract(参考訳): 我々は,H\より古い連続$q$-th微分を持つ凸対象の最適化アルゴリズムを,$p,q \geq 1$に対して$q$-th位オーラクルを用いて,$p$-normに対して開発する。
他の構造化関数も最適化できる。
非ユークリッド不コンパクト加速近点法を開発し、一様凸正則化器を用いる。
また、局所オラクルを介して関数と相互作用する任意の決定論的アルゴリズムに対して、ほぼ一致する下界を提供する。
関連論文リスト
- First-Order Methods for Linearly Constrained Bilevel Optimization [38.19659447295665]
本稿では,高次ヘッセン計算に対する一階線形制約最適化手法を提案する。
線形不等式制約に対しては、$widetildeO(ddelta-1 epsilon-3)$ gradient oracle callにおいて$(delta,epsilon)$-Goldstein固定性を得る。
論文 参考訳(メタデータ) (2024-06-18T16:41:21Z) - An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization [37.300102993926046]
リプシッツの目的の滑らかな点も凸点も生成しない点の複雑さについて検討する。
私たちの分析は単純だが強力だ。
Goldstein-subdifferential set, これは最近の進歩を可能にする。
非滑らかな非最適化
論文 参考訳(メタデータ) (2023-07-10T11:56:04Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
相補的な合成条件に基づく2つの難解なミラー降下アルゴリズムを導入する。
注目すべきは、どちらのアルゴリズムも、目的関数のリプシッツ定数や滑らかさに関する事前の知識なしで機能する。
本稿では,大規模半確定プログラム上での手法の効率性とロバスト性を示す。
論文 参考訳(メタデータ) (2023-06-30T08:34:29Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
本稿では,数種類のバイナリ最適化問題に対して,厳密な実行保証を有する量子アルゴリズムを提案する。
このアルゴリズムは、$n$非依存定数$c$に対して、時間で$O*(2(0.5-c)n)$の最適解を求める。
また、$k$-spinモデルからのランダムなインスタンスの多数と、完全に満足あるいはわずかにフラストレーションされた$k$-CSP式に対して、文 (a) がそうであることを示す。
論文 参考訳(メタデータ) (2022-12-03T02:45:23Z) - Private Convex Optimization in General Norms [23.166642097170545]
任意のノルム$normxcdot$におけるリプシッツである凸関数の微分プライベート最適化のための新しいフレームワークを提案する。
本稿では,このメカニズムが差分プライバシーを満足し,DP-ERM(経験的リスク最小化)とDP-SCO(確率的凸最適化)の両方を解決することを示す。
我々のフレームワークは、一般ノルム空間におけるプライベート凸最適化に初めて適用され、ミラー降下によって達成された非プライベートSCOレートを直接回復する。
論文 参考訳(メタデータ) (2022-07-18T02:02:22Z) - The First Optimal Acceleration of High-Order Methods in Smooth Convex
Optimization [88.91190483500932]
本研究では,滑らかな凸最小化問題の解法として最適高次アルゴリズムを求めるための基本的オープンな問題について検討する。
この理由は、これらのアルゴリズムが複雑なバイナリプロシージャを実行する必要があるため、最適でも実用でもないからである。
我々は、最初のアルゴリズムに$mathcalOleft(epsilon-2/(p+1)right)$pthのオーダーオーラクル複雑性を与えることで、この根本的な問題を解決する。
論文 参考訳(メタデータ) (2022-05-19T16:04:40Z) - Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax
Optimization [47.27237492375659]
双線型結合されたミニマックス問題:$min_x max_y f(x) + ytop A x - h(y)$, ここでは$f$と$h$はどちらも強凸滑らかな関数である。
Omega(sqrtfracL_xmu_x + frac|A|sqrtmu_x,mu_y) log(frac1vareps) の低い複雑性境界を達成した1次アルゴリズムは知られていない。
論文 参考訳(メタデータ) (2022-01-19T05:56:19Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
凸凹対象 $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, ここで、$f$ は局所リプシッツ勾配を持つ凸関数であり、$g$ は凸かつ非滑らかである。
主勾配ステップと2段ステップを交互に交互に行うCondat-Vuアルゴリズムの適応バージョンを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:19:30Z) - Second-Order Information in Non-Convex Stochastic Optimization: Power
and Limitations [54.42518331209581]
私たちは発見するアルゴリズムを見つけます。
epsilon$-approximate stationary point ($|nabla F(x)|le epsilon$) using
$(epsilon,gamma)$surimateランダムランダムポイント。
ここでの私たちの下限は、ノイズのないケースでも新規です。
論文 参考訳(メタデータ) (2020-06-24T04:41:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。