論文の概要: Non-Euclidean High-Order Smooth Convex Optimization
- arxiv url: http://arxiv.org/abs/2411.08987v2
- Date: Thu, 06 Feb 2025 13:58:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 15:30:40.384126
- Title: Non-Euclidean High-Order Smooth Convex Optimization
- Title(参考訳): 非ユークリッド高次平滑凸最適化
- Authors: Juan Pablo Contreras, Cristóbal Guzmán, David Martínez-Rubio,
- Abstract要約: 我々はH"より古い連続$q$-th微分を持つ凸対象の最適化のためのアルゴリズムを開発する。
提案アルゴリズムは,1leq pleq infty$ に対して $ell_p$-settings を含む,穏やかな条件下での一般ノルムに対して作用する。
- 参考スコア(独自算出の注目度): 9.940728137241214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop algorithms for the optimization of convex objectives that have H\"older continuous $q$-th derivatives by using a $q$-th order oracle, for any $q \geq 1$. Our algorithms work for general norms under mild conditions, including the $\ell_p$-settings for $1\leq p\leq \infty$. We can also optimize structured functions that allow for inexactly implementing a non-Euclidean ball optimization oracle. We do this by developing a non-Euclidean inexact accelerated proximal point method that makes use of an \emph{inexact uniformly convex regularizer}. We show a lower bound for general norms that demonstrates our algorithms are nearly optimal in high-dimensions in the black-box oracle model for $\ell_p$-settings and all $q \geq 1$, even in randomized and parallel settings. This new lower bound, when applied to the first-order smooth case, resolves an open question in parallel convex optimization.
- Abstract(参考訳): 我々は,任意の$q \geq 1$に対して,H\より古い連続$q$-th微分を持つ凸対象の最適化アルゴリズムを開発する。
我々のアルゴリズムは穏やかな条件下で一般的なノルムに対して作用し、例えば$\ell_p$-settings for $1\leq p\leq \infty$である。
また、非ユークリッド球最適化オラクルを不正確に実装できる構造化関数を最適化することもできる。
我々は、非ユークリッド不コンパクト加速近点法を開発し、一様凸正則化器を用いる。
我々のアルゴリズムがブラックボックスのオラクルモデルにおいて、$\ell_p$-settingsとすべての$q \geq 1$に対して、ランダム化や並列化であっても、ほぼ最適であることを示す一般的なノルムの低い境界を示す。
この新たな下界は、一階の滑らかなケースに適用すると、平行凸最適化において開問題を解決する。
関連論文リスト
- First-Order Methods for Linearly Constrained Bilevel Optimization [38.19659447295665]
本稿では,高次ヘッセン計算に対する一階線形制約最適化手法を提案する。
線形不等式制約に対しては、$widetildeO(ddelta-1 epsilon-3)$ gradient oracle callにおいて$(delta,epsilon)$-Goldstein固定性を得る。
論文 参考訳(メタデータ) (2024-06-18T16:41:21Z) - An Algorithm with Optimal Dimension-Dependence for Zero-Order Nonsmooth Nonconvex Stochastic Optimization [37.300102993926046]
リプシッツの目的の滑らかな点も凸点も生成しない点の複雑さについて検討する。
私たちの分析は単純だが強力だ。
Goldstein-subdifferential set, これは最近の進歩を可能にする。
非滑らかな非最適化
論文 参考訳(メタデータ) (2023-07-10T11:56:04Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
相補的な合成条件に基づく2つの難解なミラー降下アルゴリズムを導入する。
注目すべきは、どちらのアルゴリズムも、目的関数のリプシッツ定数や滑らかさに関する事前の知識なしで機能する。
本稿では,大規模半確定プログラム上での手法の効率性とロバスト性を示す。
論文 参考訳(メタデータ) (2023-06-30T08:34:29Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
次元自由な次元自由アルゴリズムを得るにはランダム化が必要であることを示す。
我々のアルゴリズムは、ReLUネットワークを最適化する最初の決定論的次元自由アルゴリズムを得る。
論文 参考訳(メタデータ) (2023-02-16T13:57:19Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
本稿では,数種類のバイナリ最適化問題に対して,厳密な実行保証を有する量子アルゴリズムを提案する。
このアルゴリズムは、$n$非依存定数$c$に対して、時間で$O*(2(0.5-c)n)$の最適解を求める。
また、$k$-spinモデルからのランダムなインスタンスの多数と、完全に満足あるいはわずかにフラストレーションされた$k$-CSP式に対して、文 (a) がそうであることを示す。
論文 参考訳(メタデータ) (2022-12-03T02:45:23Z) - Extra-Newton: A First Approach to Noise-Adaptive Accelerated
Second-Order Methods [57.050204432302195]
本研究では,2次スムーズな凸関数を最小化するための普遍的かつ適応的な2次法を提案する。
我々のアルゴリズムは、オラクルフィードバックが分散$sigma2$であるときに$O(sigma / sqrtT)$収束を達成し、決定論的オラクルで$O(1 / T3)$に収束を改善する。
論文 参考訳(メタデータ) (2022-11-03T14:12:51Z) - On the Complexity of Finding Small Subgradients in Nonsmooth
Optimization [31.714928102950584]
決定論的アルゴリズムにより次元自由度を達成できないことを示す。
関数が凸である場合に、$(delta,epsilon)$-定常点を見つける収束率をどのように改善できるかを示す。
論文 参考訳(メタデータ) (2022-09-21T13:30:00Z) - Private Convex Optimization in General Norms [23.166642097170545]
任意のノルム$normxcdot$におけるリプシッツである凸関数の微分プライベート最適化のための新しいフレームワークを提案する。
本稿では,このメカニズムが差分プライバシーを満足し,DP-ERM(経験的リスク最小化)とDP-SCO(確率的凸最適化)の両方を解決することを示す。
我々のフレームワークは、一般ノルム空間におけるプライベート凸最適化に初めて適用され、ミラー降下によって達成された非プライベートSCOレートを直接回復する。
論文 参考訳(メタデータ) (2022-07-18T02:02:22Z) - The First Optimal Acceleration of High-Order Methods in Smooth Convex
Optimization [88.91190483500932]
本研究では,滑らかな凸最小化問題の解法として最適高次アルゴリズムを求めるための基本的オープンな問題について検討する。
この理由は、これらのアルゴリズムが複雑なバイナリプロシージャを実行する必要があるため、最適でも実用でもないからである。
我々は、最初のアルゴリズムに$mathcalOleft(epsilon-2/(p+1)right)$pthのオーダーオーラクル複雑性を与えることで、この根本的な問題を解決する。
論文 参考訳(メタデータ) (2022-05-19T16:04:40Z) - Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax
Optimization [47.27237492375659]
双線型結合されたミニマックス問題:$min_x max_y f(x) + ytop A x - h(y)$, ここでは$f$と$h$はどちらも強凸滑らかな関数である。
Omega(sqrtfracL_xmu_x + frac|A|sqrtmu_x,mu_y) log(frac1vareps) の低い複雑性境界を達成した1次アルゴリズムは知られていない。
論文 参考訳(メタデータ) (2022-01-19T05:56:19Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
凸凹対象 $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, ここで、$f$ は局所リプシッツ勾配を持つ凸関数であり、$g$ は凸かつ非滑らかである。
主勾配ステップと2段ステップを交互に交互に行うCondat-Vuアルゴリズムの適応バージョンを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:19:30Z) - Submodular + Concave [53.208470310734825]
第一次最適化法が凹関数の最大目的値に収束できることはよく確立されている。
本研究では、滑らかな函数凸体(英語版)の行列式を$F(x) = G(x) +C(x)$で始める。
このクラスの函数は、保証がないような凹凸函数と連続DR-部分モジュラ函数の両方の拡張である。
論文 参考訳(メタデータ) (2021-06-09T01:59:55Z) - Parameter-free Stochastic Optimization of Variationally Coherent
Functions [19.468067110814808]
我々は$mathbbRdilon上で関数のクラスを1次最適化するためのアルゴリズムを設計・解析する。
この2つを同時に実現したのは初めてである。
論文 参考訳(メタデータ) (2021-01-30T15:05:34Z) - High-Order Oracle Complexity of Smooth and Strongly Convex Optimization [31.714928102950584]
非常に滑らかな (Lipschitz $k$-thorder derivative) 関数と強い凸関数を$k$-thorder Oracleへの呼び出しによって最適化する複雑性を考える。
我々は、関数を正確に$epsilon$まで最適化するために、固定された$k$で最悪の場合のオラクルの複雑さが$leftの順序にあることを証明している。
論文 参考訳(メタデータ) (2020-10-13T19:18:15Z) - Second-Order Information in Non-Convex Stochastic Optimization: Power
and Limitations [54.42518331209581]
私たちは発見するアルゴリズムを見つけます。
epsilon$-approximate stationary point ($|nabla F(x)|le epsilon$) using
$(epsilon,gamma)$surimateランダムランダムポイント。
ここでの私たちの下限は、ノイズのないケースでも新規です。
論文 参考訳(メタデータ) (2020-06-24T04:41:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。