On the Selection Stability of Stability Selection and Its Applications
- URL: http://arxiv.org/abs/2411.09097v1
- Date: Thu, 14 Nov 2024 00:02:54 GMT
- Title: On the Selection Stability of Stability Selection and Its Applications
- Authors: Mahdi Nouraie, Samuel Muller,
- Abstract summary: This paper seeks to broaden the use of an established stability estimator to evaluate the overall stability of the stability selection framework.
We suggest that the stability estimator offers two advantages: it can serve as a reference to reflect the robustness of the outcomes obtained and help identify an optimal regularization value to improve stability.
- Score: 2.263635133348731
- License:
- Abstract: Stability selection is a widely adopted resampling-based framework for high-dimensional structure estimation and variable selection. However, the concept of 'stability' is often narrowly addressed, primarily through examining selection frequencies, or 'stability paths'. This paper seeks to broaden the use of an established stability estimator to evaluate the overall stability of the stability selection framework, moving beyond single-variable analysis. We suggest that the stability estimator offers two advantages: it can serve as a reference to reflect the robustness of the outcomes obtained and help identify an optimal regularization value to improve stability. By determining this value, we aim to calibrate key stability selection parameters, namely, the decision threshold and the expected number of falsely selected variables, within established theoretical bounds. Furthermore, we explore a novel selection criterion based on this regularization value. With the asymptotic distribution of the stability estimator previously established, convergence to true stability is ensured, allowing us to observe stability trends over successive sub-samples. This approach sheds light on the required number of sub-samples addressing a notable gap in prior studies. The 'stabplot' package is developed to facilitate the use of the plots featured in this manuscript, supporting their integration into further statistical analysis and research workflows.
Related papers
- Stability Evaluation via Distributional Perturbation Analysis [28.379994938809133]
We propose a stability evaluation criterion based on distributional perturbations.
Our stability evaluation criterion can address both emphdata corruptions and emphsub-population shifts.
Empirically, we validate the practical utility of our stability evaluation criterion across a host of real-world applications.
arXiv Detail & Related papers (2024-05-06T06:47:14Z) - The Bayesian Stability Zoo [18.074002943658055]
We show that many definitions of stability found in the learning theory literature are equivalent to one another.
Within each family, we establish equivalences between various definitions, encompassing approximate differential privacy, pure differential privacy, replicability, global stability, perfect generalization, TV stability, mutual information stability, KL-divergence stability, and R'enyi-divergence stability.
This work is a step towards a more systematic taxonomy of stability notions in learning theory, which can promote clarity and an improved understanding of an array of stability concepts that have emerged in recent years.
arXiv Detail & Related papers (2023-10-27T18:59:31Z) - Stochastic Subgradient Methods with Guaranteed Global Stability in Nonsmooth Nonconvex Optimization [3.0586855806896045]
We first investigate a general framework for subgradient methods, where the corresponding differential inclusion admits a coercive Lyapunov function.
We develop an improved analysis to apply proposed framework to establish the global stability of a wide range of subgradient methods, where the corresponding Lyapunov functions are possibly non-coercive.
arXiv Detail & Related papers (2023-07-19T15:26:18Z) - Minimax Optimal Estimation of Stability Under Distribution Shift [8.893526921869137]
We analyze the stability of a system under distribution shift.
The stability measure is defined in terms of a more intuitive quantity: the level of acceptable performance degradation.
Our characterization of the minimax convergence rate shows that evaluating stability against large performance degradation incurs a statistical cost.
arXiv Detail & Related papers (2022-12-13T02:40:30Z) - Stability and Generalization for Markov Chain Stochastic Gradient
Methods [49.981789906200035]
We provide a comprehensive generalization analysis of MC-SGMs for both minimization and minimax problems.
We establish the optimal excess population risk bounds for both smooth and non-smooth cases.
We develop the first nearly optimal convergence rates for convex-concave problems both in expectation and with high probability.
arXiv Detail & Related papers (2022-09-16T15:42:51Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - On the Sample Complexity and Metastability of Heavy-tailed Policy Search
in Continuous Control [47.71156648737803]
Reinforcement learning is a framework for interactive decision-making with incentives sequentially revealed across time without a system dynamics model.
We characterize a defined defined chain, identifying that policies associated with Levy Processes of a tail index yield to wider peaks.
arXiv Detail & Related papers (2021-06-15T20:12:44Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
empowerment principle enables unsupervised stabilization of dynamical systems at upright positions.
We propose an alternative solution based on a trainable representation of a dynamical system as a Gaussian channel.
We show that our method has a lower sample complexity, is more stable in training, possesses the essential properties of the empowerment function, and allows estimation of empowerment from images.
arXiv Detail & Related papers (2020-07-14T21:10:16Z) - Fine-Grained Analysis of Stability and Generalization for Stochastic
Gradient Descent [55.85456985750134]
We introduce a new stability measure called on-average model stability, for which we develop novel bounds controlled by the risks of SGD iterates.
This yields generalization bounds depending on the behavior of the best model, and leads to the first-ever-known fast bounds in the low-noise setting.
To our best knowledge, this gives the firstever-known stability and generalization for SGD with even non-differentiable loss functions.
arXiv Detail & Related papers (2020-06-15T06:30:19Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.