論文の概要: Artificial Theory of Mind and Self-Guided Social Organisation
- arxiv url: http://arxiv.org/abs/2411.09169v1
- Date: Thu, 14 Nov 2024 04:06:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:25:18.307683
- Title: Artificial Theory of Mind and Self-Guided Social Organisation
- Title(参考訳): 心の人工理論と自己指導型社会組織
- Authors: Michael S. Harré, Jaime Ruiz-Serra, Catherine Drysdale,
- Abstract要約: 人工知能(AI)が直面する課題の1つは、エージェントの集合が、単一のエージェントが到達できない目標を達成するために、どのように行動を調整するかである。
我々は、ニューラルネットワークにおける単一ニューロンの複雑さによる最近の研究に基づいて、一般的な設定での集合的知能について論じる。
社会構造が神経生理学、心理学、言語にどのように影響されているかを示す。
- 参考スコア(独自算出の注目度): 1.8434042562191815
- License:
- Abstract: One of the challenges artificial intelligence (AI) faces is how a collection of agents coordinate their behaviour to achieve goals that are not reachable by any single agent. In a recent article by Ozmen et al this was framed as one of six grand challenges: That AI needs to respect human cognitive processes at the human-AI interaction frontier. We suggest that this extends to the AI-AI frontier and that it should also reflect human psychology, as it is the only successful framework we have from which to build out. In this extended abstract we first make the case for collective intelligence in a general setting, drawing on recent work from single neuron complexity in neural networks and ant network adaptability in ant colonies. From there we introduce how species relate to one another in an ecological network via niche selection, niche choice, and niche conformity with the aim of forming an analogy with human social network development as new agents join together and coordinate. From there we show how our social structures are influenced by our neuro-physiology, our psychology, and our language. This emphasises how individual people within a social network influence the structure and performance of that network in complex tasks, and that cognitive faculties such as Theory of Mind play a central role. We finish by discussing the current state of the art in AI and where there is potential for further development of a socially embodied collective artificial intelligence that is capable of guiding its own social structures.
- Abstract(参考訳): 人工知能(AI)が直面する課題の1つは、エージェントの集合が、単一のエージェントが到達できない目標を達成するために、どのように行動を調整するかである。
Ozmen氏らによる最近の記事によると、これは6つの大きな課題の1つだ。 このAIは、人間とAIの相互作用フロンティアにおいて、人間の認知プロセスを尊重する必要がある。
これはAI-AIフロンティアにまで拡張され、そこから構築する唯一の成功したフレームワークであるため、人間の心理学も反映されるべきである、と我々は提案する。
この拡張抽象化では、ニューラルネットワークにおける単一ニューロンの複雑さとアリコロニーにおけるアリネットワーク適応性による最近の研究に基づいて、一般的な環境での集合知能のケースを最初に作成する。
そこで我々は, ニッチ選択, ニッチ選択, ニッチ適合性を通じて, 生態ネットワークにおける種同士の関連性について紹介する。
そこから、私たちの社会構造が、私たちの神経生理学、心理学、そして私たちの言語にどのように影響されているかを示します。
これは、ソーシャルネットワーク内の個人が複雑なタスクにおけるネットワークの構造とパフォーマンスにどのように影響するかを強調し、心の理論のような認知能力が中心的な役割を担っている。
私たちは、現在最先端のAIについて議論し、社会構造を導くことのできる、社会的に具体化された集団人工知能のさらなる発展の可能性について論じる。
関連論文リスト
- Shifting the Human-AI Relationship: Toward a Dynamic Relational Learning-Partner Model [0.0]
我々は、人間との対話から学ぶ学生に似た、AIを学習パートナーとして見ることへのシフトを提唱する。
我々は「第三の心」が人間とAIの協力関係を通して生まれることを示唆する。
論文 参考訳(メタデータ) (2024-10-07T19:19:39Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
ソーシャルインテリジェントAIエージェント(Social-AI)の構築は、多分野、マルチモーダルな研究目標である。
我々は、社会AIを前進させるために、基礎となる技術的課題と、コンピューティングコミュニティ全体にわたる研究者のためのオープンな質問を特定します。
論文 参考訳(メタデータ) (2024-04-17T02:57:42Z) - AI-enhanced Collective Intelligence [2.5063318977668465]
人間とAIは、人間またはAIの集団的知性を単独で超越できる補完的能力を持っている。
このレビューでは、複雑なネットワーク科学からの視点を取り入れ、人間-AI集団知能の多層表現を概念化する。
エージェントの多様性と相互作用がシステムの集合知にどのように影響するかを探求し、AIによって強化された集合知の実例を分析する。
論文 参考訳(メタデータ) (2024-03-15T16:11:15Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
物理仮想アマルガメーションの様々な形態を包含した統一表現を提供する対称現実感フレームワークを導入する。
我々は、対称現実の潜在的な応用を示すAI駆動型アクティブアシストサービスの例を提案する。
論文 参考訳(メタデータ) (2024-01-26T16:09:39Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
人工エージェントと人間との複雑な社会的相互作用をシミュレートするオープンエンド環境であるSOTOPIAを提案する。
エージェントは、複雑な社会的目標を達成するために協調し、協力し、交換し、互いに競い合う。
GPT-4は,人間よりも目標達成率が著しく低く,社会的常識的推論や戦略的コミュニケーション能力の発揮に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-10-18T02:27:01Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Social Neuro AI: Social Interaction as the "dark matter" of AI [0.0]
我々は、社会心理学と社会神経科学の実証結果と力学の枠組みが、よりインテリジェントな人工エージェントの開発にインスピレーションを与えることができると主張している。
論文 参考訳(メタデータ) (2021-12-31T13:41:53Z) - Crossing the Tepper Line: An Emerging Ontology for Describing the
Dynamic Sociality of Embodied AI [0.9176056742068814]
AIがいかに「社会的に具現化されたAI」として現れるかを示す。
私たちはこれを、人間によって社会的かつエージェント的と認識された場合、対話的なコンテキスト内でaiを「循環的に」実施する状態と定義します。
論文 参考訳(メタデータ) (2021-03-15T00:45:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。