論文の概要: Hybrid deep additive neural networks
- arxiv url: http://arxiv.org/abs/2411.09175v1
- Date: Thu, 14 Nov 2024 04:26:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:25:17.236251
- Title: Hybrid deep additive neural networks
- Title(参考訳): ハイブリッドディープ付加型ニューラルネットワーク
- Authors: Gyu Min Kim, Jeong Min Jeon,
- Abstract要約: 加算回帰という概念を取り入れた新しいディープニューラルネットワークを導入する。
我々のニューラルネットワークは、Kolmogorov-Arnoldネットワークとアーキテクチャ上の類似点を共有しているが、よりシンプルで柔軟なアクティベーションと基底関数に基づいている。
我々はそれらの普遍近似特性を導出し、シミュレーション研究と実データ応用を通してその効果を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Traditional neural networks (multi-layer perceptrons) have become an important tool in data science due to their success across a wide range of tasks. However, their performance is sometimes unsatisfactory, and they often require a large number of parameters, primarily due to their reliance on the linear combination structure. Meanwhile, additive regression has been a popular alternative to linear regression in statistics. In this work, we introduce novel deep neural networks that incorporate the idea of additive regression. Our neural networks share architectural similarities with Kolmogorov-Arnold networks but are based on simpler yet flexible activation and basis functions. Additionally, we introduce several hybrid neural networks that combine this architecture with that of traditional neural networks. We derive their universal approximation properties and demonstrate their effectiveness through simulation studies and a real-data application. The numerical results indicate that our neural networks generally achieve better performance than traditional neural networks while using fewer parameters.
- Abstract(参考訳): 従来のニューラルネットワーク(複数層パーセプトロン)は、幅広いタスクで成功したため、データサイエンスにおいて重要なツールとなっている。
しかし、それらの性能は不満足な場合もあり、主に線形結合構造に依存しているため、多くのパラメータを必要とすることが多い。
一方、加法回帰は統計学における線形回帰の代替として人気がある。
本研究では,加法回帰という概念を取り入れた新しいディープニューラルネットワークを提案する。
我々のニューラルネットワークは、Kolmogorov-Arnoldネットワークとアーキテクチャ上の類似点を共有しているが、よりシンプルで柔軟なアクティベーションと基底関数に基づいている。
さらに、このアーキテクチャと従来のニューラルネットワークのアーキテクチャを組み合わせた、いくつかのハイブリッドニューラルネットワークを導入します。
我々はそれらの普遍近似特性を導出し、シミュレーション研究と実データ応用を通してその効果を実証する。
数値的な結果から,ニューラルネットワークは従来のニューラルネットワークよりも性能が良く,パラメータも少ないことが示唆された。
関連論文リスト
- Message Passing Variational Autoregressive Network for Solving Intractable Ising Models [6.261096199903392]
自己回帰型ニューラルネットワーク、畳み込み型ニューラルネットワーク、リカレントニューラルネットワーク、グラフニューラルネットワークなど、多くのディープニューラルネットワークがIsingモデルの解決に使用されている。
本稿では、スピン変数間の相互作用を効果的に活用できるメッセージパッシング機構を備えた変分自己回帰アーキテクチャを提案する。
新しいネットワークは、アニーリングフレームワークの下で訓練され、いくつかの原型スピンハミルトニアンの解法、特に低温での大きなスピン系において、既存の方法よりも優れている。
論文 参考訳(メタデータ) (2024-04-09T11:27:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Riemannian Residual Neural Networks [58.925132597945634]
残余ニューラルネットワーク(ResNet)の拡張方法を示す。
ResNetは、機械学習において、有益な学習特性、優れた経験的結果、そして様々なニューラルネットワークを構築する際に容易に組み込める性質のために、ユビキタスになった。
論文 参考訳(メタデータ) (2023-10-16T02:12:32Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Consistency of Neural Networks with Regularization [0.0]
本稿では,ニューラルネットワークの規則化による一般的な枠組みを提案し,その一貫性を実証する。
双曲関数(Tanh)と整形線形単位(ReLU)の2種類の活性化関数が検討されている。
論文 参考訳(メタデータ) (2022-06-22T23:33:39Z) - Creating Powerful and Interpretable Models withRegression Networks [2.2049183478692584]
本稿では,ニューラルネットワークのパワーと回帰分析の可視性を組み合わせた新しいアーキテクチャRegression Networksを提案する。
これらのモデルが,いくつかのベンチマークデータセット上での解釈可能なモデルの最先端性能を上回ることを実証する。
論文 参考訳(メタデータ) (2021-07-30T03:37:00Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
ある無限大のニューラルネットワークにおいて、ニューラル・タンジェント・カーネル(NTK)理論は一般化を完全に特徴づける。
線形近似は、ニューラルネットワークの特定のタスクの学習複雑性を確実にランク付けできることを示す。
我々の研究は、将来の理論的研究を刺激する新しい深層学習現象の具体例を提供する。
論文 参考訳(メタデータ) (2021-06-12T13:05:11Z) - Deep Randomized Neural Networks [12.333836441649343]
ランダム化されたニューラルネットワークは、ほとんどの接続が固定されたニューラルネットワークの挙動を探索する。
本章はランダム化ニューラルネットワークの設計と解析に関する主要な側面をすべて調査する。
論文 参考訳(メタデータ) (2020-02-27T17:57:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。