論文の概要: Rethinking Weight-Averaged Model-merging
- arxiv url: http://arxiv.org/abs/2411.09263v5
- Date: Tue, 19 Aug 2025 12:07:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.345227
- Title: Rethinking Weight-Averaged Model-merging
- Title(参考訳): 重量平均モデルマージの再考
- Authors: Hu Wang, Congbo Ma, Ibrahim Almakky, Ian Reid, Gustavo Carneiro, Mohammad Yaqub,
- Abstract要約: モデルマージ(特に重量平均化)は、計算を節約し、追加のトレーニングなしでモデル性能を向上させるという驚くべき効果を示した。
本研究では,解釈可能性のレンズを通した平均的な重み付けモデルを再解釈し,その挙動を規定するメカニズムに関する実証的な知見を提供する。
- 参考スコア(独自算出の注目度): 15.2881959315021
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Model merging, particularly through weight averaging, has shown surprising effectiveness in saving computations and improving model performance without any additional training. However, the interpretability of why and how this technique works remains unclear. In this work, we reinterpret weight-averaged model merging through the lens of interpretability and provide empirical insights into the underlying mechanisms that govern its behavior. We approach the problem from three perspectives: (1) we analyze the learned weight structures and demonstrate that model weights encode structured representations that help explain the compatibility of weight averaging; (2) we compare averaging in weight space and feature space across diverse model architectures (CNNs and ViTs) and datasets, aiming to expose under which circumstances what combination paradigm will work more effectively; (3) we study the effect of parameter scaling on prediction stability, highlighting how weight averaging acts as a form of regularization that contributes to robustness. By framing these analyses in an interpretability context, our work contributes to a more transparent and systematic understanding of model merging for stakeholders interested in the safety and reliability of untrained model combination methods. The code is available at https://github.com/billhhh/Rethink-Merge.
- Abstract(参考訳): モデルマージ(特に重量平均化)は、計算を節約し、追加のトレーニングなしでモデル性能を向上させるという驚くべき効果を示した。
しかし、なぜ、どのようにこの技法が機能するのかは、まだ不明である。
本研究では,解釈可能性のレンズを通した平均的な重み付けモデルを再解釈し,その挙動を規定するメカニズムに関する実証的な知見を提供する。
我々は,(1) 学習した重み構造を分析し, 平均化の整合性を説明する構造表現を符号化したモデル重みの符号化, (2) 重み空間と多種多様なモデルアーキテクチャ(CNN, ViT)とデータセット間の特徴空間の平均化を比較し, 組み合わせパラダイムがより効果的に機能する状況を明らかにすること, 3) パラメータスケーリングが予測安定性に与える影響について検討し, 平均化が頑健性に寄与する正規化の形式としてどのように機能するかを明らかにする。
これらの分析を解釈可能性の文脈でフレーミングすることで、我々の研究は、訓練されていないモデルの組み合わせメソッドの安全性と信頼性に関心のあるステークホルダーに対して、より透明で体系的なモデルマージの理解に寄与します。
コードはhttps://github.com/billhhhh/Rethink-Merge.comで公開されている。
関連論文リスト
- Multi-Level Collaboration in Model Merging [56.31088116526825]
本稿では,モデルマージとモデルアンサンブルの本質的な関係について考察する。
これまでの制限が満たされていない場合でも、モデルのマージによって、アンサンブルと同じような、ほぼ同一かつ優れたパフォーマンスを達成する方法がまだ存在することが分かっています。
論文 参考訳(メタデータ) (2025-03-03T07:45:04Z) - A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - Exploring Model Kinship for Merging Large Language Models [52.01652098827454]
本稿では,大規模言語モデル間の類似性や関連性の程度であるモデル親和性を紹介する。
モデル統合後の性能向上とモデル親和性の間には,一定の関係があることが判明した。
我々は新しいモデルマージ戦略を提案する。Top-k Greedy Merging with Model Kinship。
論文 参考訳(メタデータ) (2024-10-16T14:29:29Z) - What Matters for Model Merging at Scale? [94.26607564817786]
モデルマージは、複数の専門家モデルとより有能な単一モデルを組み合わせることを目的としている。
これまでの研究は主に、いくつかの小さなモデルをマージすることに焦点を当ててきた。
本研究は,大規模モデルマージの有用性を体系的に評価する。
論文 参考訳(メタデータ) (2024-10-04T17:17:19Z) - Weight Scope Alignment: A Frustratingly Easy Method for Model Merging [40.080926444789085]
非I.D.データは平均的なモデル融合にとって大きな課題となる。
本稿では,異なるトレーニング条件下での重量範囲の変化を明らかにする。
幸いなことに、各層のパラメータは基本的にガウス分布に従っており、これは新しく単純な正規化アプローチを刺激している。
論文 参考訳(メタデータ) (2024-08-22T09:13:27Z) - Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
我々は、最先端の学習ベースアプローチの2つのタイプを広範かつ包括的に調査する。
本稿では,シーケンスベースモデルの優先度と,グラフベースモデルの限定能力について実験的に検証する。
論文 参考訳(メタデータ) (2024-08-14T13:01:30Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
我々は、世界的知識の源として各エンティティに関連するメタ機能を活用し、モデルからエンティティ表現を採用する。
本稿では,これらの表現とメタ機能との整合性を,事前学習モデルの評価指標として用いることを提案する。
提案手法の有効性は,関係データセットを用いたモデル,大規模言語モデル,画像モデルなど,様々な領域で実証されている。
論文 参考訳(メタデータ) (2024-01-02T17:08:26Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
フェデレートラーニング(FL)は通常、サンプル比率によって決定される重み付けアプローチを使用して、クライアントモデルパラメータを集約する。
上記の重み付け法を,各局所モデルの一般化境界を考慮した新しい戦略に置き換える。
論文 参考訳(メタデータ) (2023-11-10T08:50:28Z) - Revisiting Implicit Models: Sparsity Trade-offs Capability in
Weight-tied Model for Vision Tasks [4.872984658007499]
ディープ平衡モデル(Deep Equilibrium Models, DEQ)のような暗黙のモデルは、無限層のモデルを訓練する能力によって、コミュニティにおいて大きな注目を集めている。
暗黙のモデルの行を再検討し、それらを元の重み付けモデルに遡る。
驚くべきことに、重み付けモデルの方がDECの変種と比較して、より効率的で、安定であり、視覚タスク上でも効率的である。
論文 参考訳(メタデータ) (2023-07-16T11:45:35Z) - Understanding Parameter Sharing in Transformers [53.75988363281843]
トランスフォーマーに関するこれまでの研究は、異なるレイヤでパラメータを共有することに集中しており、モデルの深さを増大させることで、限られたパラメータを持つモデルの性能を向上させることができる。
このアプローチの成功は, モデル複雑性の増加により, ごく一部に過ぎず, 収束性の向上に大きく寄与することを示す。
8つの機械翻訳タスクの実験結果から,パラメータ共有モデルのモデル複雑性を半分に抑えて,我々のモデルが競合性能を達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T10:48:59Z) - Representer Point Selection for Explaining Regularized High-dimensional
Models [105.75758452952357]
本稿では,高次元表現器と呼ぶサンプルベース説明のクラスを紹介する。
私たちのワークホースは、一般化された高次元モデルに対する新しい代表者定理である。
提案手法の実証的性能について,実世界の2進分類データセットと2つの推薦システムデータセットを用いて検討した。
論文 参考訳(メタデータ) (2023-05-31T16:23:58Z) - An Empirical Study of Multimodal Model Merging [148.48412442848795]
モデルマージは、異なるタスクでトレーニングされた複数のモデルを融合してマルチタスクソリューションを生成するテクニックである。
我々は、モダリティ固有のアーキテクチャのビジョン、言語、およびクロスモーダルトランスフォーマーをマージできる新しい目標に向けて研究を行っている。
本稿では,重み間の距離を推定し,マージ結果の指標となる2つの指標を提案する。
論文 参考訳(メタデータ) (2023-04-28T15:43:21Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - Meta-Ensemble Parameter Learning [35.6391802164328]
本稿では,メタラーニング手法を用いて,単一モデルのパラメータを直接予測できるかどうかを考察する。
WeightFormerは、トランスフォーマーベースのモデルで、フォワードパスの層で生徒のネットワーク重みを予測できる。
論文 参考訳(メタデータ) (2022-10-05T00:47:24Z) - Merging Models with Fisher-Weighted Averaging [24.698591753644077]
我々は、複数のモデルを1つに“マージ”するモデル間で知識を伝達する、根本的に異なる方法を紹介します。
提案手法は,モデルのパラメータの重み付け平均を効果的に計算する。
マージ手順により、これまで探索されていなかった方法でモデルを組み合わせることが可能であることを示す。
論文 参考訳(メタデータ) (2021-11-18T17:59:35Z) - Distributional Depth-Based Estimation of Object Articulation Models [21.046351215949525]
本研究では,奥行き画像から直接,調音モデルパラメータの分布を効率よく学習する手法を提案する。
私たちのコアコントリビューションには、剛体変換に対する分布の新しい表現が含まれています。
本稿では,カテゴリに依存しない調音モデル推定を行う新しい深層学習手法DUST-netを提案する。
論文 参考訳(メタデータ) (2021-08-12T17:44:51Z) - Structured learning of rigid-body dynamics: A survey and unified view
from a robotics perspective [5.597839822252915]
剛体力学とデータ駆動モデリング技術を組み合わせた回帰モデルについて検討した。
我々は、ニューラルネットワークやガウス過程などのデータ駆動回帰モデルと分析モデル先行モデルの組み合わせに関する統一的な見解を提供する。
論文 参考訳(メタデータ) (2020-12-11T11:26:48Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。