論文の概要: Realizing Quantum Kernel Models at Scale with Matrix Product State Simulation
- arxiv url: http://arxiv.org/abs/2411.09336v1
- Date: Thu, 14 Nov 2024 10:33:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:24:18.743241
- Title: Realizing Quantum Kernel Models at Scale with Matrix Product State Simulation
- Title(参考訳): マトリックス製品状態シミュレーションによる大規模量子カーネルモデルの実現
- Authors: Mekena Metcalf, Pablo Andrés-Martínez, Nathan Fitzpatrick,
- Abstract要約: マトリックス製品状態シミュレータを用いた量子カーネルフレームワークを開発した。
我々は165の特徴と6400のトレーニングデータポイントを持つ分類タスクを実行するためにそれを利用する。
特徴量やトレーニングデータの増加に伴い,量子カーネルモデルの性能が向上することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Data representation in quantum state space offers an alternative function space for machine learning tasks. However, benchmarking these algorithms at a practical scale has been limited by ineffective simulation methods. We develop a quantum kernel framework using a Matrix Product State (MPS) simulator and employ it to perform a classification task with 165 features and 6400 training data points, well beyond the scale of any prior work. We make use of a circuit ansatz on a linear chain of qubits with increasing interaction distance between qubits. We assess the MPS simulator performance on CPUs and GPUs and, by systematically increasing the qubit interaction distance, we identify a crossover point beyond which the GPU implementation runs faster. We show that quantum kernel model performance improves as the feature dimension and training data increases, which is the first evidence of quantum model performance at scale.
- Abstract(参考訳): 量子状態空間におけるデータ表現は、機械学習タスクのための代替関数空間を提供する。
しかし、これらのアルゴリズムを実用規模でベンチマークすることは、非効率なシミュレーション手法によって制限されている。
我々は、マトリックス製品状態シミュレータ(MPS)を用いて量子カーネルフレームワークを開発し、165のフィーチャと6400のトレーニングデータポイントを持つ分類タスクを実行する。
我々は、量子ビット間の相互作用距離を増大させる線形鎖上の回路アンサッツを利用する。
我々は,CPUおよびGPU上でのMPSシミュレータの性能を評価し,量子ビット間相互作用距離を体系的に増加させることで,GPU実装が高速に動作するクロスオーバー点を特定する。
量子カーネルモデルの性能は,特徴次元とトレーニングデータの増加に伴って向上し,量子モデルが大規模に性能を示す最初の証拠であることを示す。
関連論文リスト
- A Comprehensive Cross-Model Framework for Benchmarking the Performance of Quantum Hamiltonian Simulations [0.0]
本稿では,Trotterized quantum Hamiltonian 進化におけるゲートベース量子コンピュータの性能の様々な側面を評価するための方法論とソフトウェアフレームワークを提案する。
このフレームワークは、HamLibライブラリの5つのハミルトンモデル(FermiとBose-Hubbardモデル、横フィールドイジングモデル、Heisenbergモデル、Max3SAT問題)について実証する。
論文 参考訳(メタデータ) (2024-09-11T00:21:45Z) - TANQ-Sim: Tensorcore Accelerated Noisy Quantum System Simulation via QIR on Perlmutter HPC [16.27167995786167]
TANQ-Simは、コヒーレントノイズと非コヒーレントノイズの両方で実用的なディープ回路をシミュレートするために設計された、フルスケールの密度行列ベースのシミュレータである。
このようなシミュレーションにかかわる計算コストに対処するため,新しい密度行列シミュレーション手法を提案する。
また,その性能を最適化するために,密度行列シミュレーションのための特定のゲート融合手法を提案する。
論文 参考訳(メタデータ) (2024-04-19T21:16:29Z) - State of practice: evaluating GPU performance of state vector and tensor
network methods [2.7930955543692817]
本稿では,8種類の量子サブルーチンを用いたテストベンチにおける現状シミュレーション手法の限界について検討する。
我々は,最大1桁のスピードアップを達成し,最適なシミュレーション戦略を選択する方法について強調する。
論文 参考訳(メタデータ) (2024-01-11T09:22:21Z) - Efficient Quantum Circuit Simulation by Tensor Network Methods on Modern GPUs [11.87665112550076]
量子ハードウェアでは、一次シミュレーション法は状態ベクトルとテンソルネットワークに基づいている。
量子ビットと量子ゲートの数が増加するにつれて、ヒルベルト空間の圧倒的な大きさと広範な絡み合いにより、従来の状態ベクトルベースの量子回路シミュレーション手法は不十分であることが証明される。
本研究では,計算効率と精度の2つの側面から最適化手法を提案する。
論文 参考訳(メタデータ) (2023-10-06T02:24:05Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
我々は、QUantum Network Communication (SeQUeNCe) のオープンソースシミュレータを用いて、2つの原子周波数コム(AFC)吸収量子メモリ間の絡み合いの発生をシミュレートする。
本研究は,SeQUeNCe における truncated Fock 空間内の光量子状態の表現を実現する。
本研究では,SPDC音源の平均光子数と,平均光子数とメモリモード数の両方で異なる絡み合い発生率を観測する。
論文 参考訳(メタデータ) (2022-12-17T05:51:17Z) - Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach [47.19265172105025]
グラフ構造化データのための新しいハイブリッド量子古典アルゴリズムを提案し、これをEgo-graph based Quantum Graph Neural Network (egoQGNN)と呼ぶ。
egoQGNNはテンソル積とユニティ行列表現を用いてGNN理論フレームワークを実装し、必要なモデルパラメータの数を大幅に削減する。
このアーキテクチャは、現実世界のデータからヒルベルト空間への新しいマッピングに基づいている。
論文 参考訳(メタデータ) (2022-01-13T16:35:45Z) - Parallel Simulation of Quantum Networks with Distributed Quantum State
Management [56.24769206561207]
我々は、量子ネットワークの並列シミュレーションの要件を特定し、最初の並列離散事象量子ネットワークシミュレータを開発する。
コントリビューションには、複数のプロセスに分散した共有量子情報を維持する量子状態マネージャの設計と開発が含まれています。
既存のシーケンシャルバージョンと並行してオープンソースツールとして,並列SeQUeNCeシミュレータをリリースする。
論文 参考訳(メタデータ) (2021-11-06T16:51:17Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
最大21キュービットの雑音量子フーリエ変換プロセッサをシミュレートする。
我々は、デジタルエラーモデルに頼るのではなく、微視的な散逸過程を考慮に入れている。
動作中の消散機構によっては、入力状態の選択が量子アルゴリズムの性能に強い影響を与えることが示される。
論文 参考訳(メタデータ) (2021-02-08T14:55:44Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。