Adaptively Augmented Consistency Learning: A Semi-supervised Segmentation Framework for Remote Sensing
- URL: http://arxiv.org/abs/2411.09344v1
- Date: Thu, 14 Nov 2024 10:47:01 GMT
- Title: Adaptively Augmented Consistency Learning: A Semi-supervised Segmentation Framework for Remote Sensing
- Authors: Hui Ye, Haodong Chen, Xiaoming Chen, Vera Chung,
- Abstract summary: AACL is a semi-supervised segmentation framework designed to enhance RS segmentation accuracy under limited labeled data.
AACL achieves competitive performance in semi-supervised segmentation, showing up to a 20% improvement in specific categories and 2% increase in overall performance compared to state-of-the-art frameworks.
- Score: 9.867670296534103
- License:
- Abstract: Remote sensing (RS) involves the acquisition of data about objects or areas from a distance, primarily to monitor environmental changes, manage resources, and support planning and disaster response. A significant challenge in RS segmentation is the scarcity of high-quality labeled images due to the diversity and complexity of RS image, which makes pixel-level annotation difficult and hinders the development of effective supervised segmentation algorithms. To solve this problem, we propose Adaptively Augmented Consistency Learning (AACL), a semi-supervised segmentation framework designed to enhances RS segmentation accuracy under condictions of limited labeled data. AACL extracts additional information embedded in unlabeled images through the use of Uniform Strength Augmentation (USAug) and Adaptive Cut-Mix (AdaCM). Evaluations across various RS datasets demonstrate that AACL achieves competitive performance in semi-supervised segmentation, showing up to a 20% improvement in specific categories and 2% increase in overall performance compared to state-of-the-art frameworks.
Related papers
- Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - SegMatch: A semi-supervised learning method for surgical instrument
segmentation [10.223709180135419]
We propose SegMatch, a semi supervised learning method to reduce the need for expensive annotation for laparoscopic and robotic surgical images.
SegMatch builds on FixMatch, a widespread semi supervised classification pipeline combining consistency regularization and pseudo labelling.
Our results demonstrate that adding unlabelled data for training purposes allows us to surpass the performance of fully supervised approaches.
arXiv Detail & Related papers (2023-08-09T21:30:18Z) - ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance [61.04246102067351]
We propose a foreground harmonization framework (ARHNet) to tackle intensity disparities and make synthetic images look more realistic.
We demonstrate the efficacy of our method in improving the segmentation performance using real and synthetic images.
arXiv Detail & Related papers (2023-07-02T10:39:29Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
We propose an end-to-end multi-category instance segmentation model, which consists of a Semantic Attention (SEA) module and a Scale Complementary Mask Branch (SCMB)
SEA module contains a simple fully convolutional semantic segmentation branch with extra supervision to strengthen the activation of interest instances on the feature map.
SCMB extends the original single mask branch to trident mask branches and introduces complementary mask supervision at different scales.
arXiv Detail & Related papers (2021-07-25T08:53:59Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.