論文の概要: LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation
- arxiv url: http://arxiv.org/abs/2411.09410v1
- Date: Thu, 14 Nov 2024 13:00:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:23:14.460563
- Title: LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation
- Title(参考訳): シーケンスレコメンデーションのためのLLM支援型明示的・暗黙的多目的学習フレームワーク
- Authors: Shutong Qiao, Chen Gao, Yong Li, Hongzhi Yin,
- Abstract要約: 本研究では,ユーザの興味を2つのレベル – 行動と意味論 – でモデル化する,明示的で暗黙的な多目的学習フレームワークを提案する。
提案するEIMFフレームワークは,小型モデルとLLMを効果的に組み合わせ,多目的モデリングの精度を向上させる。
- 参考スコア(独自算出の注目度): 50.98046887582194
- License:
- Abstract: Multi-interest modeling in current recommender systems (RS) is mainly based on user behavioral data, capturing user interest preferences from multiple dimensions. However, since behavioral data is implicit and often highly sparse, it is challenging to understand users' complex and diverse interests. Recent studies have shown that the rich semantic information in the text can effectively supplement the deficiencies of behavioral data. Despite this, it is still difficult for small models to directly extract semantic features associated with users' deep interests. That is, how to effectively align semantics with behavioral information to form a more comprehensive and accurate understanding of user interests has become a critical research problem.To address this, we propose an LLM-assisted explicit and implicit multi-interest learning framework (named EIMF) to model user interests on two levels: behavior and semantics. The framework consists of two parts: Implicit Behavioral Interest Module (IBIM) and Explicit Semantic Interest Module (ESIM). The traditional multi-interest RS model in IBIM can learn users' implicit behavioral interests from interactions with items. In ESIM, we first adopt a clustering algorithm to select typical samples and design a prompting strategy on LLM to obtain explicit semantic interests. Furthermore, in the training phase, the semantic interests of typical samples can enhance the representation learning of behavioral interests based on the multi-task learning on semantic prediction and modality alignment. Therefore, in the inference stage, accurate recommendations can be achieved with only the user's behavioral data. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed EIMF framework, which effectively and efficiently combines small models with LLM to improve the accuracy of multi-interest modeling.
- Abstract(参考訳): 現在のレコメンデータシステム(RS)におけるマルチ関心モデリングは、主にユーザの行動データに基づいており、複数の次元からユーザの嗜好をキャプチャする。
しかし、行動データは暗黙的であり、しばしば疎外であるため、ユーザの複雑で多様な関心事を理解することは困難である。
近年の研究では、テキスト中のリッチな意味情報は、行動データの欠如を効果的に補うことができることが示されている。
それにもかかわらず、小さなモデルではユーザーの深い関心事に関連する意味的特徴を直接抽出することは依然として困難である。
すなわち、セマンティクスを行動情報と効果的に整合させて、より包括的で正確なユーザ関心の理解を形成する方法が重要な研究課題となり、これを解決するために、行動とセマンティクスという2つのレベルにおけるユーザ関心をモデル化するためのLLM支援型明示的で暗黙的な多目的学習フレームワーク(EIMF)を提案する。
フレームワークはImplicit Behavioral Interest Module (IBIM)とExplicit Semantic Interest Module (ESIM)の2つの部分で構成されている。
IBIMの伝統的な多目的RSモデルは、アイテムとのインタラクションからユーザの暗黙の行動的関心を学ぶことができる。
ESIMでは、まずクラスタリングアルゴリズムを採用し、典型的なサンプルを選定し、LLM上で明示的なセマンティックな関心を得るためのプロンプト戦略を設計する。
さらに、学習段階において、典型的なサンプルの意味的関心は、意味的予測とモダリティアライメントに基づくマルチタスク学習に基づく行動的関心の表現学習を強化することができる。
したがって、推論段階では、ユーザの行動データのみを用いて正確なレコメンデーションを行うことができる。
実世界のデータセットに関する大規模な実験は、小規模モデルとLLMを効果的に効率的に組み合わせ、多目的モデリングの精度を向上させるEIMFフレームワークの有効性を実証している。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Towards Boosting LLMs-driven Relevance Modeling with Progressive Retrieved Behavior-augmented Prompting [23.61061000692023]
本研究では,検索ログに記録されたユーザインタラクションを活用して,ユーザの暗黙の検索意図に対する洞察を得ることを提案する。
ProRBPは,探索シナリオ指向の知識を大規模言語モデルと統合するための,プログレッシブ検索行動拡張型プロンプトフレームワークである。
論文 参考訳(メタデータ) (2024-08-18T11:07:38Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation [58.04939553630209]
現実世界のシステムでは、ほとんどのユーザーはほんの一握りのアイテムしか扱わないが、ほとんどのアイテムは滅多に消費されない。
これら2つの課題は、ロングテールユーザーとロングテールアイテムの課題として知られ、しばしば既存のシークエンシャルレコメンデーションシステムに困難をもたらす。
本稿では,これらの課題に対処するため,Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR)を提案する。
論文 参考訳(メタデータ) (2024-05-31T07:24:42Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
LLM(Large Language Models)は、人間に似たテキストの理解と生成に優れた言語モデルである。
本稿では,言語モデル(LLM)と情報検索(IR)システムの統合戦略について検討する。
論文 参考訳(メタデータ) (2023-11-21T02:01:01Z) - Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for
Multi-Behavior Recommendation [52.89816309759537]
マルチタイプの行動(例えば、クリック、カートの追加、購入など)は、ほとんどの現実世界のレコメンデーションシナリオに広く存在する。
最先端のマルチ振る舞いモデルは、すべての歴史的相互作用を入力として区別しない振る舞い依存を学習する。
本稿では,多様な行動に対する共有的・行動特異的な関心を学習するための,多目的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-03T05:28:14Z) - Improving Multi-Interest Network with Stable Learning [13.514488368734776]
Deep Stable Multi-Interest Learning (DESMIL) という新しい多目的ネットワークを提案する。
DESMILは、収集した関心事間の微妙な依存関係の影響を、トレーニングサンプルの学習重みによって排除しようとする。
我々は、パブリックレコメンデーションデータセット、大規模産業データセット、合成データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2022-07-14T07:49:28Z) - Multiple Interest and Fine Granularity Network for User Modeling [3.508126539399186]
ユーザモデリングは、カスタマエクスペリエンスとビジネス収益の両方の観点から、マッチングステージとランキングステージの両方において、産業レコメンデータシステムにおいて、基本的な役割を果たす。
既存のディープラーニングベースのアプローチのほとんどは、アイテムIDとカテゴリIDを活用するが、色やメイトリアルのようなきめ細かい特徴は無視し、ユーザの興味の細かい粒度をモデル化するのを妨げる。
本稿では,ユーザの多目的・細粒度に対処する多目的・細粒度ネットワーク(MFN)を提案し,ユーザの多目的間の類似性関係と組み合わせ関係からモデルを構築した。
論文 参考訳(メタデータ) (2021-12-05T15:12:08Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。