論文の概要: Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation
- arxiv url: http://arxiv.org/abs/2503.04162v1
- Date: Thu, 06 Mar 2025 07:25:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:00:33.195275
- Title: Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation
- Title(参考訳): 逐次レコメンデーションのための意味検索強化コントラスト学習
- Authors: Ziqiang Cui, Yunpeng Weng, Xing Tang, Xiaokun Zhang, Dugang Liu, Shiwei Li, Peiyang Liu, Bowei He, Weihong Luo, Xiuqiang He, Chen Ma,
- Abstract要約: 本稿では,SRA-CL(Semantic Retrieval Augmented Contrastive Learning)という手法を提案する。
SRA-CLは、(1)大規模言語モデル(LLM)を利用して多様なユーザの嗜好を理解し、意味的に類似したユーザを検索して、学習可能なサンプル手法で信頼性の高い正のサンプルを作成する、(2) LLMを使ってアイテムを理解し、類似したアイテムを検索する、アイテムセマンティック検索という2つの主要コンポーネントから構成される。
- 参考スコア(独自算出の注目度): 17.18176550968383
- License:
- Abstract: Sequential recommendation aims to model user preferences based on historical behavior sequences, which is crucial for various online platforms. Data sparsity remains a significant challenge in this area as most users have limited interactions and many items receive little attention. To mitigate this issue, contrastive learning has been widely adopted. By constructing positive sample pairs from the data itself and maximizing their agreement in the embedding space,it can leverage available data more effectively. Constructing reasonable positive sample pairs is crucial for the success of contrastive learning. However, current approaches struggle to generate reliable positive pairs as they either rely on representations learned from inherently sparse collaborative signals or use random perturbations which introduce significant uncertainty. To address these limitations, we propose a novel approach named Semantic Retrieval Augmented Contrastive Learning (SRA-CL), which leverages semantic information to improve the reliability of contrastive samples. SRA-CL comprises two main components: (1) Cross-Sequence Contrastive Learning via User Semantic Retrieval, which utilizes large language models (LLMs) to understand diverse user preferences and retrieve semantically similar users to form reliable positive samples through a learnable sample synthesis method; and (2) Intra-Sequence Contrastive Learning via Item Semantic Retrieval, which employs LLMs to comprehend items and retrieve similar items to perform semantic-based item substitution, thereby creating semantically consistent augmented views for contrastive learning. SRA-CL is plug-and-play and can be integrated into standard sequential recommendation models. Extensive experiments on four public datasets demonstrate the effectiveness and generalizability of the proposed approach.
- Abstract(参考訳): 時系列推薦は,様々なオンラインプラットフォームにおいて重要な履歴行動系列に基づくユーザの嗜好をモデル化することを目的としている。
多くのユーザとのインタラクションが限られており、多くのアイテムがほとんど注目を集めていないため、この領域ではデータの分散は依然として重要な課題である。
この問題を緩和するために、コントラスト学習が広く採用されている。
データ自体から正のサンプルペアを構築し、埋め込み空間での合意を最大化することにより、利用可能なデータをより効果的に活用することができる。
正の正のサンプルペアを構築することは、対照的な学習の成功に不可欠である。
しかし、現在のアプローチは、本質的に疎結合な信号から学んだ表現に依存するか、あるいはかなりの不確実性をもたらすランダムな摂動を利用するため、信頼できる正のペアを生成するのに苦労している。
これらの制約に対処するため,SRA-CL (Semantic Retrieval Augmented Contrastive Learning) という新しい手法を提案する。
SRA-CLは,(1)大規模言語モデル(LLM)を用いて,多様なユーザの嗜好を理解し,意味的に類似したユーザを検索して,学習可能なサンプル合成手法により信頼性の高い正のサンプルを生成すること,(2) LLMを用いてアイテムを理解し,類似項目を検索して意味に基づくアイテム置換を行う,という2つの主要コンポーネントから構成される。
SRA-CLはプラグアンドプレイであり、標準のシーケンシャルレコメンデーションモデルに統合できる。
4つの公開データセットに対する大規模な実験は、提案手法の有効性と一般化性を実証している。
関連論文リスト
- A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
新たな合成データ生成パイプラインを用いて48,000の命令追従プロンプトを生成する。
合成プロンプトでは、リジェクションサンプリング(RS)とモンテカルロ木探索(MCTS)の2つの選好データセットキュレーション手法を用いる。
実験により、MCTSが生成した選好ペアにおける共有プレフィックスは、限界はあるが一貫した改善をもたらすことが明らかになった。
高コントラストの選好ペアは一般的に低コントラストのペアよりも優れているが、両者を組み合わせることで最高のパフォーマンスが得られることが多い。
論文 参考訳(メタデータ) (2024-12-18T15:38:39Z) - LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
本研究では,ユーザの興味を2つのレベル – 行動と意味論 – でモデル化する,明示的で暗黙的な多目的学習フレームワークを提案する。
提案するEIMFフレームワークは,小型モデルとLLMを効果的に組み合わせ,多目的モデリングの精度を向上させる。
論文 参考訳(メタデータ) (2024-11-14T13:00:23Z) - ItTakesTwo: Leveraging Peer Representations for Semi-supervised LiDAR Semantic Segmentation [24.743048965822297]
本稿では,ItTakesTwo (IT2) と呼ばれる半教師付きLiDARセマンティックセマンティックセマンティクスフレームワークを提案する。
IT2は、ピアLiDAR表現からの一貫性のある予測を保証するために設計されており、一貫性学習における摂動効率を改善する。
その結果,本手法は従来のSOTA法よりも顕著に改善されていることがわかった。
論文 参考訳(メタデータ) (2024-07-09T18:26:53Z) - Diffusion-based Contrastive Learning for Sequential Recommendation [6.3482831836623355]
本稿では,CaDiRecという,文脈対応拡散に基づく逐次推薦のためのコントラスト学習を提案する。
CaDiRecは、コンテキスト対応拡散モデルを使用して、シーケンス内の所定の位置に対する代替アイテムを生成する。
フレームワーク全体をエンドツーエンドでトレーニングし、拡散モデルとレコメンデーションモデルの間でアイテムの埋め込みを共有します。
論文 参考訳(メタデータ) (2024-05-15T14:20:37Z) - Deep Semi-supervised Learning with Double-Contrast of Features and
Semantics [2.2230089845369094]
本稿では,エンド・ツー・エンドの半教師あり学習における意味と特徴の二重コントラストを提案する。
我々は情報理論を活用し、意味論と特徴の二重コントラストの合理性を説明する。
論文 参考訳(メタデータ) (2022-11-28T09:08:19Z) - Intent Contrastive Learning for Sequential Recommendation [86.54439927038968]
ユーザの意図を表現するために潜伏変数を導入し,クラスタリングにより潜伏変数の分布関数を学習する。
我々は,学習意図を対照的なSSLによってSRモデルに活用し,シーケンスのビューとそれに対応するインテントとの一致を最大化することを提案する。
4つの実世界のデータセットで実施された実験は、提案した学習パラダイムの優位性を示している。
論文 参考訳(メタデータ) (2022-02-05T09:24:13Z) - Contrastive Instruction-Trajectory Learning for Vision-Language
Navigation [66.16980504844233]
視覚言語ナビゲーション(VLN)タスクでは、エージェントが自然言語の指示でターゲットに到達する必要がある。
先行研究は、命令-軌道対間の類似点と相違点を識別できず、サブ命令の時間的連続性を無視する。
本稿では、類似したデータサンプル間の分散と、異なるデータサンプル間の分散を探索し、ロバストなナビゲーションのための独特な表現を学習するContrastive Instruction-Trajectory Learningフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-08T06:32:52Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - Contrastive Learning with Adversarial Examples [79.39156814887133]
コントラスト学習(Contrastive Learning, CL)は、視覚表現の自己教師型学習(SSL)において一般的な手法である。
本稿では,コンストラクティブ・ラーニングのための新しい逆例群を紹介し,これらの例を用いてCLAEと表記されるSSLの新しい逆トレーニングアルゴリズムを定義する。
論文 参考訳(メタデータ) (2020-10-22T20:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。