論文の概要: OpenLS-DGF: An Adaptive Open-Source Dataset Generation Framework for Machine Learning Tasks in Logic Synthesis
- arxiv url: http://arxiv.org/abs/2411.09422v2
- Date: Sat, 16 Nov 2024 07:48:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 10:50:29.765961
- Title: OpenLS-DGF: An Adaptive Open-Source Dataset Generation Framework for Machine Learning Tasks in Logic Synthesis
- Title(参考訳): OpenLS-DGF:論理合成における機械学習タスクのための適応的オープンソースデータセット生成フレームワーク
- Authors: Liwei Ni, Rui Wang, Miao Liu, Xingyu Meng, Xiaoze Lin, Junfeng Liu, Guojie Luo, Zhufei Chu, Weikang Qian, Xiaoyan Yang, Biwei Xie, Xingquan Li, Huawei Li,
- Abstract要約: OpenLS-DGFは適応論理合成データセット生成フレームワークである。
論理合成の3つの基本的なステップをカプセル化することにより、さまざまな機械学習タスクをサポートする。
生成されたOpenLS-D-v1データセットは、確立されたベンチマークから46の組合せ設計で構成されている。
- 参考スコア(独自算出の注目度): 11.073500440401894
- License:
- Abstract: This paper introduces OpenLS-DGF, an adaptive logic synthesis dataset generation framework, to enhance machine learning~(ML) applications within the logic synthesis process. Previous dataset generation flows were tailored for specific tasks or lacked integrated machine learning capabilities. While OpenLS-DGF supports various machine learning tasks by encapsulating the three fundamental steps of logic synthesis: Boolean representation, logic optimization, and technology mapping. It preserves the original information in both Verilog and machine-learning-friendly GraphML formats. The verilog files offer semi-customizable capabilities, enabling researchers to insert additional steps and incrementally refine the generated dataset. Furthermore, OpenLS-DGF includes an adaptive circuit engine that facilitates the final dataset management and downstream tasks. The generated OpenLS-D-v1 dataset comprises 46 combinational designs from established benchmarks, totaling over 966,000 Boolean circuits. OpenLS-D-v1 supports integrating new data features, making it more versatile for new challenges. This paper demonstrates the versatility of OpenLS-D-v1 through four distinct downstream tasks: circuit classification, circuit ranking, quality of results (QoR) prediction, and probability prediction. Each task is chosen to represent essential steps of logic synthesis, and the experimental results show the generated dataset from OpenLS-DGF achieves prominent diversity and applicability. The source code and datasets are available at https://github.com/Logic-Factory/ACE/blob/master/OpenLS-DGF/readme.md.
- Abstract(参考訳): 本稿では,適応型論理合成データセット生成フレームワークであるOpenLS-DGFを紹介し,論理合成プロセスにおける機械学習~(ML)アプリケーションを強化する。
以前のデータセット生成フローは、特定のタスク用に調整されたり、統合された機械学習機能が欠如していた。
OpenLS-DGFは論理合成の3つの基本的なステップをカプセル化することによって、さまざまな機械学習タスクをサポートする。
Verilogと機械学習フレンドリーなGraphMLフォーマットの両方で、元の情報を保存している。
Verilogファイルは半カスタマイズ可能な機能を提供し、研究者は追加ステップを挿入し、生成されたデータセットを漸進的に洗練することができる。
さらに、OpenLS-DGFには、最終的なデータセット管理と下流タスクを容易にする適応回路エンジンが含まれている。
生成されたOpenLS-D-v1データセットは、確立されたベンチマークから46の組合せ設計で構成され、合計966,000のブール回路で構成されている。
OpenLS-D-v1は、新しいデータ機能の統合をサポートし、新しい課題に対してより汎用性がある。
本稿では、回路分類、回路ランク付け、品質予測(QoR)、確率予測の4つの異なる下流タスクを通して、OpenLS-D-v1の汎用性を示す。
各タスクは論理合成の重要なステップを表すために選択され、実験結果はOpenLS-DGFから生成されたデータセットが顕著な多様性と適用性を達成することを示している。
ソースコードとデータセットはhttps://github.com/Logic-Factory/ACE/blob/master/OpenLS-DGF/readme.mdで公開されている。
関連論文リスト
- GL-Fusion: Rethinking the Combination of Graph Neural Network and Large Language model [63.774726052837266]
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)を深く統合した新しいアーキテクチャを導入する。
本稿では,(1)GNNのメッセージパッシング機能を直接LLMのトランスフォーマー層に組み込む構造対応トランスフォーマー,(2)グラフノードとエッジから圧縮されていない全テキストを処理するグラフテキストクロスアテンション,(3)GNN-LLMツインプレクタ,(3)GNN-LLMツインプレクタ,3)GNNのスケーラブルなワンパス予測とともに,LLMの柔軟な自己回帰生成を実現する。
論文 参考訳(メタデータ) (2024-12-08T05:49:58Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - rule4ml: An Open-Source Tool for Resource Utilization and Latency Estimation for ML Models on FPGA [0.0]
本稿では、FPGA上での合成と実装に先立って、ニューラルネットワーク(NN)のリソース利用と推論遅延を予測する新しい手法を提案する。
NNを高レベル合成(HLS)コードに変換するツールフローであるHLS4MLを活用している。
本手法では, 即時前合成予測に適応した回帰モデルを用いる。
論文 参考訳(メタデータ) (2024-08-09T19:35:10Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
本稿では,Large Language Models (LLMs) の知識を低データ構造におけるデータ拡張に活用したCLLMを紹介する。
従来のジェネレータと比較して,低データ方式におけるCLLMの優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-19T12:34:46Z) - Genixer: Empowering Multimodal Large Language Models as a Powerful Data Generator [63.762209407570715]
Genixerは4つの重要なステップからなる包括的なデータ生成パイプラインである。
LLaVA1.5でトレーニングされた合成VQAライクなデータセットは、12のマルチモーダルベンチマークのうち10のパフォーマンスを向上させる。
タスク固有のデータセットで訓練されたMLLMは、複雑な命令チューニングデータを生成する際に、GPT-4Vを超えることができる。
論文 参考訳(メタデータ) (2023-12-11T09:44:41Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
我々はエンコーダとデコーダベースのモデルを単一のプレフィックスLMに統一する。
学習方法は,「フリーランチ」仮説の主張を考察する。
データ配信においては,混合分布と多言語学習がモデル性能に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2023-05-03T17:55:25Z) - HLSDataset: Open-Source Dataset for ML-Assisted FPGA Design using High
Level Synthesis [1.7795190822602627]
本稿では,HLSを用いたML支援FPGA設計のためのデータセットであるHLSDatasetを提案する。
データセットはPolybench、Machsuite、CHStone、Rossettaなど、広く使用されているHLS Cベンチマークから生成される。
生成されたVerilogサンプルの総数はFPGAタイプあたり9000近い。
論文 参考訳(メタデータ) (2023-02-17T17:00:12Z) - OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated
Circuit Synthesis [10.338357262730863]
OpenABC-Dは、オープンソースの論理合成ツールを備えたプロトタイプなオープンソース設計によって作成された、大規模でラベル付きデータセットである。
このデータセット上で一般的な学習問題を定義し、既存のソリューションをベンチマークする。
論文 参考訳(メタデータ) (2021-10-21T17:19:19Z) - SYNC: A Copula based Framework for Generating Synthetic Data from
Aggregated Sources [8.350531869939351]
ダウンスケーリングと呼ばれる合成データ生成タスクについて検討する。
我々はSynC (Synthetic Data Generation via Gaussian Copula) と呼ばれる多段階フレームワークを提案する。
私たちはこの仕事に4つの重要な貢献をしています。
論文 参考訳(メタデータ) (2020-09-20T16:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。