ReMP: Reusable Motion Prior for Multi-domain 3D Human Pose Estimation and Motion Inbetweening
- URL: http://arxiv.org/abs/2411.09435v1
- Date: Wed, 13 Nov 2024 02:42:07 GMT
- Title: ReMP: Reusable Motion Prior for Multi-domain 3D Human Pose Estimation and Motion Inbetweening
- Authors: Hojun Jang, Young Min Kim,
- Abstract summary: We learn rich motion from prior sequence of complete parametric models of human body shape.
Our prior can easily estimate poses in missing frames or noisy measurements.
ReMP consistently outperforms the baseline method on diverse and practical 3D motion data.
- Score: 10.813269931915364
- License:
- Abstract: We present Reusable Motion prior (ReMP), an effective motion prior that can accurately track the temporal evolution of motion in various downstream tasks. Inspired by the success of foundation models, we argue that a robust spatio-temporal motion prior can encapsulate underlying 3D dynamics applicable to various sensor modalities. We learn the rich motion prior from a sequence of complete parametric models of posed human body shape. Our prior can easily estimate poses in missing frames or noisy measurements despite significant occlusion by employing a temporal attention mechanism. More interestingly, our prior can guide the system with incomplete and challenging input measurements to quickly extract critical information to estimate the sequence of poses, significantly improving the training efficiency for mesh sequence recovery. ReMP consistently outperforms the baseline method on diverse and practical 3D motion data, including depth point clouds, LiDAR scans, and IMU sensor data. Project page is available in https://hojunjang17.github.io/ReMP.
Related papers
- MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting [56.785233997533794]
We propose a novel deformable 3D Gaussian splatting framework called MotionGS.
MotionGS explores explicit motion priors to guide the deformation of 3D Gaussians.
Experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-10-10T08:19:47Z) - MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
We present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes.
By simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes.
We show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics.
arXiv Detail & Related papers (2024-10-04T18:00:07Z) - MoManifold: Learning to Measure 3D Human Motion via Decoupled Joint Acceleration Manifolds [20.83684434910106]
We present MoManifold, a novel human motion prior, which models plausible human motion in continuous high-dimensional motion space.
Specifically, we propose novel decoupled joint acceleration to model human dynamics from existing limited motion data.
Extensive experiments demonstrate that MoManifold outperforms existing SOTAs as a prior in several downstream tasks.
arXiv Detail & Related papers (2024-09-01T15:00:16Z) - HMP: Hand Motion Priors for Pose and Shape Estimation from Video [52.39020275278984]
We develop a generative motion prior specific for hands, trained on the AMASS dataset which features diverse and high-quality hand motions.
Our integration of a robust motion prior significantly enhances performance, especially in occluded scenarios.
We demonstrate our method's efficacy via qualitative and quantitative evaluations on the HO3D and DexYCB datasets.
arXiv Detail & Related papers (2023-12-27T22:35:33Z) - Motion-DVAE: Unsupervised learning for fast human motion denoising [18.432026846779372]
We introduce Motion-DVAE, a motion prior to capture the short-term dependencies of human motion.
Together with Motion-DVAE, we introduce an unsupervised learned denoising method unifying regression- and optimization-based approaches.
arXiv Detail & Related papers (2023-06-09T12:18:48Z) - Decomposed Human Motion Prior for Video Pose Estimation via Adversarial
Training [7.861513525154702]
We propose to decompose holistic motion prior to joint motion prior, making it easier for neural networks to learn from prior knowledge.
We also utilize a novel regularization loss to balance accuracy and smoothness introduced by motion prior.
Our method achieves 9% lower PA-MPJPE and 29% lower acceleration error than previous methods tested on 3DPW.
arXiv Detail & Related papers (2023-05-30T04:53:34Z) - Mutual Information-Based Temporal Difference Learning for Human Pose
Estimation in Video [16.32910684198013]
We present a novel multi-frame human pose estimation framework, which employs temporal differences across frames to model dynamic contexts.
To be specific, we design a multi-stage entangled learning sequences conditioned on multi-stage differences to derive informative motion representation sequences.
These place us to rank No.1 in the Crowd Pose Estimation in Complex Events Challenge on benchmark HiEve.
arXiv Detail & Related papers (2023-03-15T09:29:03Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - HuMoR: 3D Human Motion Model for Robust Pose Estimation [100.55369985297797]
HuMoR is a 3D Human Motion Model for Robust Estimation of temporal pose and shape.
We introduce a conditional variational autoencoder, which learns a distribution of the change in pose at each step of a motion sequence.
We demonstrate that our model generalizes to diverse motions and body shapes after training on a large motion capture dataset.
arXiv Detail & Related papers (2021-05-10T21:04:55Z) - Motion Guided 3D Pose Estimation from Videos [81.14443206968444]
We propose a new loss function, called motion loss, for the problem of monocular 3D Human pose estimation from 2D pose.
In computing motion loss, a simple yet effective representation for keypoint motion, called pairwise motion encoding, is introduced.
We design a new graph convolutional network architecture, U-shaped GCN (UGCN), which captures both short-term and long-term motion information.
arXiv Detail & Related papers (2020-04-29T06:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.