論文の概要: Communication Compression for Tensor Parallel LLM Inference
- arxiv url: http://arxiv.org/abs/2411.09510v2
- Date: Fri, 15 Nov 2024 10:47:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 12:20:07.737250
- Title: Communication Compression for Tensor Parallel LLM Inference
- Title(参考訳): テンソルパラレルLLM推論のための通信圧縮
- Authors: Jan Hansen-Palmus, Michael Truong Le, Oliver Hausdörfer, Alok Verma,
- Abstract要約: 大規模言語モデル(LLM)は人工知能のフロンティアを推し進めてきたが、数十億のパラメータと操作で構成されている。
高速な推論レイテンシを実現するため、LLMはさまざまなModel Parallelism戦略を通じて、複数のハードウェアアクセラレータにデプロイされる。
そこで本稿では, 並列化方式について詳細に検討し, 加速器間通信の圧縮による遅延低減を提案する。
- 参考スコア(独自算出の注目度): 1.199955563466263
- License:
- Abstract: Large Language Models (LLMs) have pushed the frontier of artificial intelligence but are comprised of hundreds of billions of parameters and operations. For faster inference latency, LLMs are deployed on multiple hardware accelerators through various Model Parallelism strategies. Our paper looks into the details on one such strategy - Tensor Parallel - and proposes to reduce latency by compressing inter-accelerator communication. We leverage fine grained quantization techniques to compress selected activations by 3.5 - 4.5x. Our proposed method leads up to 2x reduction of time-to-first-token (TTFT) with negligible model performance degradation.
- Abstract(参考訳): 大規模言語モデル(LLM)は人工知能のフロンティアを推し進めてきたが、数十億のパラメータと操作で構成されている。
高速な推論レイテンシを実現するため、LLMはさまざまなModel Parallelism戦略を通じて、複数のハードウェアアクセラレータにデプロイされる。
本稿では,テンソル並列(Tensor Parallel)という手法の詳細を考察し,加速器間通信の圧縮によるレイテンシ低減を提案する。
微粒化量子化技術を用いて、選択したアクティベーションを3.5-4.5倍圧縮する。
提案手法は, モデル性能劣化を伴うTTFT (Time-to-first-token) の2倍の低減を実現する。
関連論文リスト
- BRIEF: Bridging Retrieval and Inference for Multi-hop Reasoning via Compression [91.23933111083389]
BRIEF(Bridging Retrieval and Inference through Evidence Fusion)は、クエリ対応のマルチホップ推論を実行する軽量なアプローチである。
オープンソースモデルで構築した合成データに基づいて,BRIEFはより簡潔な要約を生成する。
論文 参考訳(メタデータ) (2024-10-20T04:24:16Z) - Mnemosyne: Parallelization Strategies for Efficiently Serving Multi-Million Context Length LLM Inference Requests Without Approximations [8.881243419237608]
本稿では,対話型長期コンテキスト推論のための3つの重要なイノベーションを提案する。
これらは適応的なチャンキングで、混合、シーケンスパイプライン並列(SPP)、キャッシュ並列(KVP)のプリフィルオーバーヘッドを削減する。
これらのコントリビューションは3D戦略に統合され、Mnemosyneは対話的推論を少なくとも1000万トークンまで拡張し、並列処理で高いスループットを実現することができる。
論文 参考訳(メタデータ) (2024-09-25T18:21:05Z) - ISO: Overlap of Computation and Communication within Seqenence For LLM Inference [8.616769297336708]
本稿では,シーケンスレベルで動作する計算通信重複に対する新しい戦略を提案する。
30b/70bモデルを用いて実験を行った結果,効率が著しく向上した。
論文 参考訳(メタデータ) (2024-09-04T05:22:17Z) - MARLIN: Mixed-Precision Auto-Regressive Parallel Inference on Large Language Models [58.3342517278868]
本稿では,Mixed-precision AutoRegressive LINearカーネルの設計について述べる。
バッチサイズは16-32までサポートでき、量子化のスピードアップが最大 (4times$) になる。
MarLINは非同期メモリアクセス、複雑なタスクスケジューリング、パイプライン化といったテクニックを組み合わせてこれを実現している。
論文 参考訳(メタデータ) (2024-08-21T16:10:41Z) - ShiftAddLLM: Accelerating Pretrained LLMs via Post-Training Multiplication-Less Reparameterization [13.622268474310918]
ShiftAddLLMは大規模言語モデルの効率的な乗算自由モデルである。
5.6および22.7ポイントのパープレキシティ改善を同等または低いレイテンシで達成する。
5つのLLMファミリーと8つのタスクの実験は、ShiftAddLLMの有効性を一貫して検証している。
論文 参考訳(メタデータ) (2024-06-10T02:47:55Z) - HiRE: High Recall Approximate Top-$k$ Estimation for Efficient LLM
Inference [68.59839755875252]
HiREは2つの新しいコンポーネントから構成される: (i) (i) (i) (i) (i) (i) (i) (i) (i) (i) (ii) DA-TOP-$k$: 効率的なマルチデバイス近似トップ-k$演算子) (i) (i) (i) (i) (i) (i) (i) DA-TOP-$k$演算子) 。
我々は、10億のパラメータモデルにおいて、HiREがソフトマックスとフィードフォワード層の両方に適用され、ほぼ一致した事前学習と下流の精度を実現し、1台のTPUv5eデバイスで1.47Times$の推論遅延を高速化することを示した。
論文 参考訳(メタデータ) (2024-02-14T18:04:36Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
我々のアルゴリズムは、AQLMと呼ばれ、情報検索のための古典的な加算量子化(AQ)アプローチを一般化する。
トークン生成のためのAQLMの高速GPUおよびCPU実装を提供しており、最適化されたFP16実装を高速にマッチングまたは性能良くすることができる。
論文 参考訳(メタデータ) (2024-01-11T18:54:44Z) - LLMLingua: Compressing Prompts for Accelerated Inference of Large
Language Models [22.06402870816756]
大きな言語モデル(LLM)は、その驚くべき能力のために様々なアプリケーションに適用されている。
本稿では,意味的整合性を維持するための予算制御を伴う粗大なプロンプト圧縮手法であるLLMLinguaを提案する。
提案手法により,最先端性能が得られ,最大20倍圧縮が可能であり,性能損失が少ないことを示す。
論文 参考訳(メタデータ) (2023-10-09T14:10:21Z) - Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM
Inference with Transferable Prompt [96.24800696597707]
圧縮モデルにより,このトレードオフを最適化する新たな視点を導入する。
本稿では,圧縮されたモデルを学習プロセスに公開するソフトプロンプト学習法を提案する。
我々のソフトプロンプト戦略は8x圧縮LLaMA-7Bモデルの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-05-17T20:45:13Z) - Parameter-efficient Tuning of Large-scale Multimodal Foundation Model [68.24510810095802]
我々はこれらの課題を克服するために、クロスモーダル転送(Aurora)のための優雅なプロンプトフレームワークを提案する。
既存のアーキテクチャの冗長性を考慮すると、まずモード近似を用いて0.1Mのトレーニング可能なパラメータを生成し、マルチモーダルプロンプトチューニングを実装する。
6つのクロスモーダルベンチマークの徹底的な評価は、最先端のベンチマークを上回るだけでなく、完全な微調整アプローチよりも優れていることを示している。
論文 参考訳(メタデータ) (2023-05-15T06:40:56Z) - Fine-tuning Language Models over Slow Networks using Activation
Compression with Guarantees [33.38465345409054]
我々は、AC-SGDと最先端勾配圧縮アルゴリズムを組み合わせることで、"エンドツーエンド圧縮"を可能にすることを示す。
AC-SGDは、モデル品質を犠牲にすることなく、遅いネットワークで最大4.3倍のエンドツーエンドのスピードアップを提供する。
論文 参考訳(メタデータ) (2022-06-02T20:49:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。